
Order this document
by AN1222/D

AN1222/D

Arithmetic Waveform Synthesis
with the HC05/08 MCUs
by Mark McQuilken & Mark Glenewinkel

CSIC Applications

AN1222

INTRODUCTION

IThis application note is intended to demonstrate the use of Arithmetic Synthesis to create sinusoidal
waveforms from a microcontroller unit (MCU). Given an accumulation constant predefined in memory, a
very precise sinusoidal waveform can be produced from a table of sinusoidal values in memory. The values
selected from the table are then sent out an MCU port to a digital-to-analog converter (DAC). This applica-
tion note has been written for the HC08 MCU. Although cycle execution time will be different, the program
listing for the HC08 is also applicable to the HC05.

BACKGROUND

The process of producing tones using an accumulated value that is used to point to the next output time
(magnitude) sample is called "Arithmetic Synthesis". This is contrasted to Direct Digital Synthesis where
the "distance" between each sample taken from sinewave table is constant.

Arithmetic Synthesis utilizes a standard DAC look-up, phase value table consisting of (in this case) 256
phase values for a single cycle of a sine wave. The position in this table is determined by two bytes of data:
the MSB which is the integer index into the DAC look-up table, and the LSB which is the fractional depth
into the table. Since this fractional portion is not used to directly address a sine sample directly, the effect is
evident only when the continual accumulation of this fraction causes an overflow into the integer portion.
This effect may be seen in a simple example of repeatedly adding (accumulating) a fixed value while only
attributing significance to the integer portion:

Accumulation Addend Result
(Truncated Integer) (Integer Fraction) (Integer Fraction)
0 + 1.25 1.25
1 + 1.25 2.50
2 + 1.25 3.75
3 + 1.25 5.00
5 + 1.25 6.25
6 etc ...

The effect of the fractional accumulation on the integer portion is an occasionally "skipped" value (like the
value of 4 that was skipped above). The integer part of the accumulator is then used to point into the sine
table to obtain a magnitude for that time sample. The frequency of occurance of this skipping is a function of
the fractional value. Hence, we can determine, with the appropriate choice of fraction and integer, the output

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

rxzb30
ForwardLine

rxzb30
fslcopyrightline

rxzb30
freescalecolorjpeg

2

frequency of the digitized sinewave to a high degree of accuracy. The exact
mathematical relationship, for a 256 phase value table, is:

 Accumulation Constant = 256 x Desired Frequency x Sampling Period

The sampling period would be:

Sampling Period = E clock period * # of cycles in loop

Once the accumulation constant, D, is determined, it must be put into the memory
locations Int_K and Frac_K. This calculation is shown below:

D = 6.575
Int_K = 6 = $06
Frac_K = 0.575 * 256 = 147.2

 = $93

Once the accumulation constant is defined, the synthesizer is ready to be used. This
application note uses the HC08 MCU but the algorithm can be used with any MCU so
long as the algorithm is followed and the accumulation constant is defined for the
appropriate sampling period.

Arithmetic synthesis produces some artifacts that are not desirable in some
applications. One of those artifacts is called "phase noise" (or phase jitter). With an ideal
sinewave, the period is fixed and unvarying for every cycle. This means that the
instantaneous frequency and the average frequency are the same. What occurs with an
arithmetically synthesized waveform, however, is that the instantaneous frequency
changes from cycle-to-cycle due to the "sample skipping" performed in the AS algorithm
while the average frequency remains quite stable and precise. This cycle-to-cycle
variation in instantaneous frequency is called phase noise. Applications which are
sensitive to changing instantaneous frequency and/or to the additional spectral
components produced by the jitter (these components would be categorized anywhere
from distortion to just plain noise, depending on the system) may not want to use AS as
the primary method of signal synthesis.

TESTING OF THE ARITHMETIC SYNTHESIZER

In order to test the arithmetic synthesizer, any 8 bit parallel DAC can be used. An
Analog Devices AD557JN was used to test our code. The 557 is an easy to use DAC. A
basic schematic for the 557 is listed below in Figure #1. The 8 bit digital waveform data
is sent to the DAC and the conversion occurs immediately after receiving the
information. The sampling period of the waveform is determined by the speed at which
data is written to the DAC port. If other MCUs are to be used with this basic circuit,
make sure the sampling frequency does exceed the specifed output settling time.
Please refer to the AD557 data sheet if more information is needed.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

3

GND

+Vcc
Vout

Sense A

Sense B

Bit8

Bit7

Bit6

Bit5

Bit4

Bit3

Bit1

Bit2

(LSB)

(MSB)

Analog Output

GND

CE

CS

+5V

MCU 8 Bit Port

AD557

1

2

3

4

5

6

7

8 10

9

1312

16

15

14

11

Figure #1 - Basic schematic for the AD557 Digital-to-Analog Converter

DESCRIPTION OF THE ARITHMETIC SYNTHESIS SOFTWARE

The flowchart and code listing written to illustrate arithmetic synthesis is given at the
end of this application note. The file name is called ARSYN8.ASM. The code written to
execute the loop routine takes 29 cycles. Assuming the HC08 is running at a speed of 8
MHz, the sampling period would be:

Sampling period = E clock period * 29 cycles
 = 125nsec * 29 cycles
 = 3.625 usec

Let's say that you want to produce a sinewave with a frequency of 8 kHz. The
accumulation constant will be:

D = 256 * 8000Hz * 3.625usec
 = 7.424

The accumulation constant must now be put into the memory locations Int_K and
Frac_K. These numbers are shown below:

Int_K = $07
Frac_K = 0.424 * 256 = 108.544

 = $6C

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

4

The routine is written using an infinite loop. This is not the most practical application of
the algorithm but it allows experimentation and measurement of the waveform. Some
applications may need a waveform to last for a specified length of time. This can be
done by adding a counter into the loop. The sampling period will be affected so the
accumulation constant must be changed to reflect the new sampling period.

The sampling period will change when you use an HC05 MCU. Be sure to recalculate
the sampling period with the HC05's bus frequency and cycle counts. The code listed
will assemble with an HC05 assembler.

ARSYN8.ASM and can be downloaded from the Freescale MCU Bulletin Board Service.
The BBS number is (512) 891-3733. The serial protocol is 1200 or 2400, 8 bits, 1 stop
bit, and no parity. The file is located on the CSIC bulletin board in the APPNOTES
directory.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

5

ARSYN8 - ARITHMETIC SYNTHESIS FLOWCHART

Begin ARSYN8

Clear 16 bit

Accumulation Constant

Load ACCA with LSB

Accumulator

Add Frac_K to AccA

Store ACCA to LSB

Accumulator

Load ACCA with MSB

Accumulator

Load X with ACCA for

table indexing

A

A

Add Int_K and Carry

bit to AccA

Store ACCA to MSB

Accumulator

Load ACCA with the

value in SineTable

pointed to by X

Store result to

DAC Port

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

6

ARSYN8.ASM - ARITHMETIC SYNTHESIS CODE LISTING

**
*
* Program Name: ARSYN8.ASM (Arithmetic Synthesizer)
* Revision: 1.00
* Date: February 3,1993
*
* Written By: Mark Glenewinkel
* CSIC Applications
*
* Assembled Under: P&E Microcomputer Systems IASM08
*
* *********************************
* * Revision History *
* *********************************
*
* Rev 0.50 12/15/93 M.A. McQuilken
* HC05 version to be translated to HC08 code
*
* Rev 0.60 01/21/93 M.R. Glenewinkel
* Added more comments
*
* Rev 1.00 02/18/93 M.R. Glenewinkel
* HC08 version
*
**
*
* Program Description:
*
* This routine produces a sinusoid of a specified frequency at
* the output of a Digital-to-Analog Converter (DAC) attached
* to Port X (set by the user) of an HC08.
*
* Basically, this method utilizes a standard DAC look-up table
* consisting of (in this case) 256 phase values for a single
* cycle of a sinewave. The position in this table is determined
* by two bytes of data: the MSB which is the integer index into
* the DAC look-up table, and the LSB which is the fractional
* depth into the table. Since this fractional portion is not
* used to directly address a sine sample directly, its effect
* is made only when the continual accumulation of this fraction
* causes an overflow into the integer portion.
*
* We can determine, with the appropriate choice of fraction
* and integer, the output frequency of the digitized sinewave
* to a high degree of accuracy. The exact mathematical
* relationship, for 256 phase values, is:
*
* Accumulation Constant = 256 x Desired Frequency x Sample Time
*
* The sample time, in this case, is 3.625 usec using an HC08
* running with an 8MHz E clock. The sample period is calculated
* by determining the number of instructions within the
* generating loop (29 cyc) and multiplying the number by the
* bus clock period. In this example an 8kHz sinewave is to be
* sythesized. The accumulation constant will be:

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

7

*
* D = 7.424
*
* Thus, in the source code, the memory locations Int_K and
* Frac_K should contain $07 and $6C, respectively, upon entering
* the ArithSyn routine.
*
********************************* CAUTION ****************************
* Please understand the impact that code and/or hardware changes may
* have on the desired, synthesized output frequency. Before making
* changes be certain that you understand the ramifications.
**
*
********************************* NOTE *******************************
* This code assumes that you've got an appropriate DAC on PortB (in
* this case, the testbed consisted of an AD557JN on PortB) and that
* you've made PortB an output port in your initialization code.
**
*
* TASK DATA:
* Input Variables Output Variables Description
* ---------------- ----------------- -------------
* Frac_K Enter with the
* appropriate
* fractional
* accumulate value.
* Int_K Enter with appropriate
* integer accumulation
* value.
*
*
*
* LOCAL DATA:
* Input Variables Output Variables Description
* ---------------- ----------------- -------------
* Cntr Cntr Determines length of
* time the sinewave is
* generated with a
* maximum value of
* approx. 4.5 msec.
* AccumLSB AccumLSB Least significant
* byte of 16-bit
* phase accumulator.
* AccumMSB AccumMSB Most significant
* byte of 16-bit
* phase accumulator.
* This is the value
* that is used to point
* into the sine table.
* ACCA ACCA Misc. computational
* use.
* X X Misc. computational
* use.
*
**
*
* Register and Variable Equates
*

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

8

PortB equ $01
DAC equ PortB
*
**
*
* Memory
*
 ORG $50
AccumLSB RMB 1
AccumMSB RMB 1
Frac_K RMB 1
Int_K RMB 1
*
**

 ORG $6E00 ;beginning of program area
START EQU *

**

* Main Routine

* We must prepare the workspace, any nonzero variables could
* alter our process.

ArithSyn clr AccumLSB
 clr AccumMSB

* At this point we're ready to actually begin the process of
* generating the sinewave. The accumulation is done with an 8-bit
* fraction and an 8-bit integer.
* So, basically, we're going to have the HC08 do a 16-bit addition:

SignalGen lda AccumLSB ;3 - Get current LSB value
 ; of the phase accum.
 add Frac_K ;3 - The fractional
 ; constant is added to
 ; the LSB of the phase
 ; accumulator.
 sta AccumLSB ;3 - Make sure that
 ; the updated value is
 ; kept for the next time
 ; through the loop.

* Here's the second half of our 16-bit addition. This will
* propagate any overflow from the 8-bit addition of the
* AccumLSB and Frac_K into AccumMSB:

 lda AccumMSB ;3 - Get current MSB value
 ; of the phase accum.
 adc Int_K ;3 - The integer constant
 ; is added to the MSB of
 ; the phase accum.
 ; Notice the addition
 ; with carry.
 sta AccumMSB ;3 - Save for next time
 ; through the loop.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

9

* If we've made it here, then we are ready to turn our phase
* value into a sine wave at the output of the DAC:

 tax ;1 - ACCA contains the
 ; integer portion of the
 ; 16-bit phase value.
 ; We need to move it into
 ; the X-reg to do a table
 ; look-up.
 lda SineTable,X ;4 - Get the sine value
 sta DAC ;3 - Send it to the DAC
 ; to create a real-world
 ; signal.

 bra SignalGen ;5 - Branch to top of
 ; signal generation
 ; for an infinite loop

**

* Tables

SineTable FCB $80,$83,$86,$89,$8C,$90,$93,$96
 FCB $99,$9C,$9F,$A2,$A5,$A8,$AB
 FCB $AE,$B1,$B3,$B6,$B9,$BC,$BF,$C1
 FCB $C4,$C7,$C9,$CC,$CE,$D1,$D3
 FCB $D5,$D8,$DA,$DC,$DE,$E0,$E2,$E4
 FCB $E6,$E8,$EA,$EB,$ED,$EF,$F0
 FCB $F1,$F3,$F4,$F5,$F6,$F8,$F9,$FA
 FCB $FA,$FB,$FC,$FD,$FD,$FE,$FE
 FCB $FE,$FF,$FF,$FF,$FF,$FF,$FF,$FF
 FCB $FE,$FE,$FE,$FD,$FD,$FC,$FB
 FCB $FA,$FA,$F9,$F8,$F6,$F5,$F4,$F3
 FCB $F1,$F0,$EF,$ED,$EB,$EA,$E8
 FCB $E6,$E4,$E2,$E0,$DE,$DC,$DA,$D8
 FCB $D5,$D3,$D1,$CE,$CC,$C9,$C7
 FCB $C4,$C1,$BF,$BC,$B9,$B6,$B3,$B1
 FCB $AE,$AB,$A8,$A5,$A2,$9F,$9C
 FCB $99,$96,$93,$90,$8C,$89,$86,$83
 FCB $80,$7D,$7A,$77,$74,$70,$6D
 FCB $6A,$67,$64,$61,$5E,$5B,$58,$55
 FCB $52,$4F,$4D,$4A,$47,$44,$41
 FCB $3F,$3C,$39,$37,$34,$32,$2F,$2D
 FCB $2B,$28,$26,$24,$22,$20,$1E
 FCB $1C,$1A,$18,$16,$15,$13,$11,$10
 FCB $0F,$0D,$0C,$0B,$0A,$08,$07
 FCB $06,$06,$05,$04,$03,$03,$02,$02
 FCB $02,$01,$01,$01,$01,$01,$01
 FCB $01,$02,$02,$02,$03,$03,$04,$05
 FCB $06,$06,$07,$08,$0A,$0B,$0C
 FCB $0D,$0F,$10,$11,$13,$15,$16,$18
 FCB $1A,$1C,$1E,$20,$22,$24,$26
 FCB $28,$2B,$2D,$2F,$32,$34,$37,$39
 FCB $3C,$3F,$41,$44,$47,$4A,$4D
 FCB $4F,$52,$55,$58,$5B,$5E,$61,$64
 FCB $67,$6A,$6D,$70,$74,$77,$7A,$7D

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

10

**

* Vector Setup

 ORG $FFFE
 DW START ;set up reset vector

**

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	INTRODUCTION
	BACKGROUND
	TESTING OF THE ARITHMETIC SYNTHESIZER
	DESCRIPTION OF THE ARITHMETIC SYNTHESIS SOFTWARE
	ARSYN8 - ARITHMETIC SYNTHESIS FLOWCHART
	ARSYN8.ASM - ARITHMETIC SYNTHESIS CODE LISTING

