

AN11732
LPC11U3x/2x USB Secondary Bootloader

Rev. 1.2 — 14 November 2016 Application note

Document information

Info Content

Keywords LPC11U3x,LPC11U2x, secondary bootloader, image creator tool, DFU

utility, firmware update, field update

Abstract This application note introduces the image creator tool and DFU utility

programs to help facilitate the use of a DFU SBL with an LPC11U3x/2x

application to enable firmware updates in the field.

NXP Semiconductors AN11732
 LPC11U3x/2x USB Secondary bootloader

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016

2 of 28

Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history

Rev Date Description

1.2 20161114 Updated the dfu-util tool

1.1 20160404 The application note was restructured and rewritten, dfu-util support for OS X and Linux

was added in addition to DFU update scripts for Windows, OS X and Linux.

1.0 20150828 Initial revision.

http://www.nxp.com/
mailto:salesaddresses@nxp.com

NXP Semiconductors AN11732
 LPC11U3x/2x USB Secondary bootloader

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016 3 of 28

1. Introduction

The LPC11U3x/2x provides the user a convenient way to update the flash content in the

field for bug fixes or product updates. This can be achieved using the following two

methods:

 ISP: In-System programming mode can be used to program or re-program the

on-chip flash memory using the internal bootloader and UART0 serial port. This

can be done when the part resides on the end-user board.

 IAP: In-Application programming performs erase and write operations on the

on-chip flash memory, as directed by the end-user application code.

A Secondary Bootloader (SBL) is a piece of code that allows a user application code to

be downloaded using alternative channels other than the standard UART0 used by the

internal bootloader. The primary bootloader is the firmware that resides in the

microcontroller’s boot ROM block and is executed on power-up and resets. After the boot

ROM’s execution, the secondary bootloader would be executed, which will then execute

the end-user application.

The purpose of this document is to explain how to use the two tools provided by NXP to

easily incorporate a Device Firmware Update (DFU) SBL with any given

LPC11U2x/LPC11U3x application binary.

2. Package contents

The extracted contents of the package should look like the following:

Fig 1. Package contents

A brief description for each of the folder is explained here:

1. dfu-util – This folder contains the dfu-util tool with source available from

http://dfu-util.gnumonks.org/. It is used to interface with the SBL through DFU.

Windows, OS X, and Linux operating system each have a dfu-util tool.

2. Drivers – This folder contains the “lpcdevice” drivers (including USB descriptors)

that must be installed in order for a Windows 7 machine to successfully detect

the DFU mode used on the LPC11U3x/2x.

NXP Semiconductors AN11732
 LPC11U3x/2x USB Secondary bootloader

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016 4 of 28

3. image-creator-tool – This folder contains the lpc11xx_secimgcr.exe program

that is used to create encryption keys, generating and inserting a valid CRC,

encrypting firmware images and generating factory images. The DFU SBL is

embedded inside this tool.

4. Sample binaries – This folder contains sample binaries of all of the files that can

be generated with the image creator tool.

a. tst_11uxx_dfu.bin – Sample application binary that was used to create all

the sample firmware images in this folder.

b. secure_fac_img.bin – Secure factory image, which is a merged image of

the DFU SBL with CRP2 activated + application binary that has been

encrypted with the ‘key’ file in this folder. CRC is generated and inserted

into application binary. Key file is placed in SBL region of memory so it

can decrypt the application code.

c. plain_fac_img.bin – Plain factory image, which is a merged image of the

DFU SBL with no CRP enabled + unencrypted application binary. CRC is

generated and inserted into application binary.

d. test_app_crc.dfu – Unencrypted application binary with CRC generated

and inserted.

e. encrypted_app_img.dfu – Application binary with CRC generated and

inserted, encrypted with the ‘key’ file in this folder

f. key – Key file, which is used to encrypt and decrypt the application

binary. The ‘key’ file used to encrypt any given application image must

also be used by the SBL to decrypt.

g. key_dis_sec – This file is used by the dfu-util.exe. Sending this file via

dfu-util will turn off CRP2 of a secure factory image making the factory

image unsecure. This file will be rejected by unsecure factory images.

h. key_fctry_upd_sec – This file is used by the dfu-util.exe. Sending this file

via dfu-util to a secure factory image will re-invoke USB ISP mode so

that the MCU will enumerate itself as a MSC (mass storage class) device.

This file will be rejected by unsecure factory images.

i. key_fctry_upd_uns – This file is used by the dfu-util.exe. Sending this file

via dfu-util to an unsecure factory image will re-invoke USB ISP mode so

that the MCU will enumerate itself as a MSC device.

5. test-app – This folder contains a Keil project for the test application.

3. Hardware environment

The sample test application was tested using Keil MDK IDE v.5.14.0.0 and the NGX

LPC11U24/301 board (#OM13033) and LPC11U37 LPCXpresso board (#OM13074).

For more information on these boards, visit the following links:

http://www.nxp.com/board/OM13033.html

http://www.nxp.com/board/OM13033.html

NXP Semiconductors AN11732
 LPC11U3x/2x USB Secondary bootloader

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016 5 of 28

http://www.nxp.com/board/OM13074.html

The DFU SBL has been tested and deployed in real solutions such as NXP’s USB Type-

C 1 – 3 Multiport Adapter. The sample test application has not been tested on LPC11U1x.

Fig 2. LPCXpresso board for LPC11U37H

Fig 3. NXP USB Type-C 1 - 3 multiport adapter

4. Development flow

To enable DFU updates for a given application:

1) Modify the existing application to support the DFU SBL. This includes reserving

flash and SRAM for the SBL, adding an image header to the application binary,

enumerating the MCU as a DFU device, and supporting the DFU detach

command to context switch from the application to SBL. See Section 5 for

information on the test application, which can be used as a base for a USB

http://www.nxp.com/board/OM13074.html

NXP Semiconductors AN11732
 LPC11U3x/2x USB Secondary bootloader

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016 6 of 28

application that is compatible with the DFU SBL. See Section 6 for information on

how to integrate the requirements for the DFU SBL in an existing application.

2) Use the image creator tool to modify the application binary. While the DFU SBL

is not provided in the form of a project or binary, it is embedded in the image

creator tool. To add the SBL into an application, use the image creator tool to

combine the DFU and application binary into one binary, which is called a factory

image. The image creator tool is also used to generate and insert a CRC

checksum into the image header region of the application binary. Optionally, the

image creator tool can generate encryption keys and use these keys to encrypt

application images. See Section 7 for more information on the image creator tool.

3) Use the dfu-util executable or provided DFU scripts to perform a DFU update by

issuing a detach command, and then sending updated application binary. See

Section 8 for more information.

After all of these steps have been completed, the field updates with the DFU SBL follow

the flow chart shown in Fig 4.

Fig 4. Field update flow

4.1 Programming flow

With a DFU SBL capable application binary, the image creator tool should be used to

create factory image and application binaries with valid CRC checksums. While both

factory images and DFU capable application codes are essentially binaries, factory

images will end with a .bin extension while DFU capable files end in a .dfu. This

differentiation is not needed when using either the image creator tool or dfu-util tool but

helps minimize confusion.

Fig 5 shows an example of the process of creating a secure factory image.

NXP Semiconductors AN11732
 LPC11U3x/2x USB Secondary bootloader

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016 7 of 28

Fig 5. Creating a secure factory image

Fig 6, Fig 7, and Fig 8 illustrate the programming flow at different stages:

Fig 6. Factory programming flow

NXP Semiconductors AN11732
 LPC11U3x/2x USB Secondary bootloader

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016 8 of 28

Fig 7. Field factory image update flow

Fig 8. Field firmware update flow

NXP Semiconductors AN11732
 LPC11U3x/2x USB Secondary bootloader

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016 9 of 28

5. Test application

A simple blinky project that has all the settings configured to enable DFU updates is

provided. It toggles PIO1_26, which is LED D2 on the LPC11U37 LPCXpresso board.

To see the necessary code that needs to be added to an existing USB project, please

see Section 6.

The DFU SBL occupies the first two sectors of the user flash which means the test

application is present at an offset 0x2000. Fig 9 shows the Keil Options for the target

window. The SBL uses first 512 bytes of RAM from address 0x10000000, that is, from

0x10000000 to 0x10000200. This RAM space is used only when the DFU SBL is invoked

from the application. This space can be used by the application but will be corrupted

once the DFU SBL is invoked.

Fig 9. Target settings

Fig 10 shows the *.ini file of the test application.

Fig 10. *.ini file of test application

NXP Semiconductors AN11732
 LPC11U3x/2x USB Secondary bootloader

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016 10 of 28

Build the project by clicking Project->Build. After the build is completed, a binary file

‘tst_11uxx_dfu.bin’ is generated in the ‘keil output’ folder.

See Fig 11 for the linker script generated by the test application.

Fig 11. Linker script test application

5.1 Image header

The image header is stored in the memory region 0x100 – 0x117. This image header is

used to indicate that it is a DFU capable application binary. This header contains

necessary information for the SBL, such as the pin configuration table, CRC length, and

CRC checksum. When the DFU SBL is re-invoked from the test application, the test

application sends a pin configuration table ‘PINONLYCFGTABLEFLASH’ and USB

descriptors of the test application to the SBL. See the SBL invoke function

‘bootSecondaryLoader ()’ in the ‘usbd_dfu.c’ file. These parameters can be updated by

the user.

Fig 12 shows the image header located in the Keil startup file.

Fig 12. Image header

NXP Semiconductors AN11732
 LPC11U3x/2x USB Secondary bootloader

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016 11 of 28

When SBL is invoked, the USB descriptors are also passed as another parameter from

the test application to the SBL. The USB Vendor ID (VID) passed is 0x1FC9 and USB

Product ID (PID) is 0x5002. See ‘enter_DFU_SL()’ in ‘usbd_dfu.c’ file. The USB string

descriptors that are passed are defined in ‘usbd_desc.c’ file of the test application.

The USB string descriptors in the test application contains Index 0 to 5. Index 0x00

indicates the Length of the descriptor, descriptor type and language id.

Fig 13. Index 0x00 of string descriptors

Index 0x01 indicates Manufacturer details.

Fig 14. Index 0x01 of string descriptors

Index 0x02 contains the product name. Here it is ‘LPK’.

Fig 15. Index 0x02 of string descriptors

NXP Semiconductors AN11732
 LPC11U3x/2x USB Secondary bootloader

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016 12 of 28

Index 0x03 contains the serial number of the device.

Fig 16. Index 0x03 of string descriptors

Index 0x04 indicates the name of interface 0. The test application uses ‘DFU’ as interface

0.

Fig 17. Index 0x04 of string descriptors

Index 0x05 indicates the name of interface 1. The test application uses a billboard class

device ‘BILLBOARD’ as interface 1.

NXP Semiconductors AN11732
 LPC11U3x/2x USB Secondary bootloader

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016 13 of 28

Fig 18. Index 0x05 of string descriptors

The above string descriptors can be updated by the user.

USB device descriptors, Billboard class descriptors, and WCID handlers are present in

the test application ‘usbd_desc.c’ file. The WCID handler enables the MCU to enumerate

on Windows 8 and later without a driver. For Windows 7, lpcdevice drivers have been

provided with the package in the ‘Drivers’ folder.

6. Enabling DFU on LPC11U2x/3x application projects

This section shows how to add in-field firmware update capability using Device Firmware

Upgrade (DFU) class interface to an existing USB application. To enable DFU capability

a Secondary Boot Loader (SBL) is implemented for LPC11U3x/2x which does image

integrity check during booting and DFU method to update the application image.

6.1 Secondary Boot Loader
The Secondary Boot Loader (SBL) described and implemented in this application note
provides a solution for in-field update of USB application implemented on LPC11U3x/2x.
It utilizes the boot ROM’s USB and IAP API functionalities to program LPC11U3x/2x flash.
The SBL occupies the first two sectors of user flash and contains routines to perform the
following functionalities:

 Application image CRC checking: During boot time, the SBL computes the
CRC32 of the application image and checks it against the value stored in the
image header. SBL will execute the application image only if CRC check passes.
This check is required to avoid booting partially programmed or corrupted images.
Partial or corrupted images could be formed due to power failures during
firmware update.

 Vector redirection: LPC11U3x/2x is an ARM Cortex-M0 based microcontroller,
which expects the vector table to be at address 0x0. Since the first sector of the
flash resides at that location, the SBL implements a vector redirector to redirect
the exception and interrupt handling to application image.

 DFU class handler: USB.org has defined DFU class specification as a firmware
update method for USB applications. SBL handles all the USB control messages
to do firmware update.

 Security: The SBL supports download of encrypted images. When a secure key
is programmed in the device the SBL sets the CRP level of the part to CRP2,
preventing debug access and ISP capabilities. Any firmware update or flash

NXP Semiconductors AN11732
 LPC11U3x/2x USB Secondary bootloader

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016 14 of 28

programming is only possible through the application which is already
programmed in flash.

 DFU API: To eliminate the overhead of implementing DFU protocol in application
code, the SBL exposes DFU API. Applications can use this API to invoke DFU
mode.

 SBL update: SBL also implements a mechanism to update its firmware using
ROM’s re-invoke USB ISP method.

6.1.1 Image header

For the application to be a valid binary for a DFU SBL, a proprietary image header must

be in the memory region 0x100 – 0x117. Refer to the Keil start up file used in the test

application provided in this application note. Fig 7 shows a snapshot of the image

header.

6.2 Program Flow

The DFU can be enabled after the USB is normally initialized, making it easy to integrate

into an existing project. To enable the DFU, a WCID handler should be registered to

allow for automatic driver installation on Windows 8 and DFU initialization function should

be executed. Upon receiving a detach command, the MCU should wait a couple

milliseconds to ensure the device successfully detached from the host. Another function

should be called in order to redirect the MCU back to the SBL. This is shown in Fig 19.

Fig 19. Program flow with DFU enabled

NXP Semiconductors AN11732
 LPC11U3x/2x USB Secondary bootloader

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016 15 of 28

There are three source files from the test application project that have the required

source code: main.c, usbd_desc.c, and usbd_dfu.c. In ‘main.c’ after initializing the USB,

the WCID handler should be registered and the usb_dfu_init() function should be

executed. See Fig 20.

Fig 20. WCID handler and usb_dfu_init()

NXP Semiconductors AN11732
 LPC11U3x/2x USB Secondary bootloader

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016 16 of 28

Add the definition of WCID event handler. See Fig 21.

Fig 21. WCID event handler

NXP Semiconductors AN11732
 LPC11U3x/2x USB Secondary bootloader

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016 17 of 28

To handle a detach, a ‘dfu_detach_sig’ variable is used as a flag. This is declared as a

global variable in ‘usbd_dfu.c’ file and also should be declared as an external variable in

the ‘app_usbd_cfg.h’ file, along with other DFU related variables and functions. See Fig

22.

Fig 22. Defining all the DFU variables as external

To handle detach event and boot the SBL, simply polling the ‘dfu_detach_sig’ flag until it

becomes a non-zero value is sufficient. Calling the function enter_DFU_SL() will turn off

the USB and may cause the detach event to not be successful between host and device.

Therefore, a delay is recommended before calling enter_DFU_SL() function. See Fig 23.

Fig 23. Polling the detach signal

NXP Semiconductors AN11732
 LPC11U3x/2x USB Secondary bootloader

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016 18 of 28

7. Creating factory images and DFU update capable images

The image creator tool is a command line only tool that can be used for the Windows

platform. This tool has the DFU SBL embedded inside and can prepend inputted

application binaries with the SBL when using the factory command. The image creator

tool is also used to calculate and add a CRC checksum into the application binary to

make it a DFU update capable application image. The image creator tool can also

generate encryption keys. These encryption keys are used in conjunction with the secure

mode that the image creator tool and SBL support. When using this secure mode while

generating a factory image, the inputted encryption key is used to encrypt the application

binary with the XXTEA algorithm while storing the encryption key in the SBL. To provide

additional security, the Code Read Protection (CRP) level 2 of the MCU will also be

enabled.

7.1 Image creator tool

The image creator tool is provided in the ‘image-creator-tool’ folder. Open the command

prompt and navigate to the directory where the executable is located.

7.1.1 Inserting a CRC checksum in the application image

To make an application image acceptable to the DFU SBL, add a CRC checksum to the

application binary. See Section 8.4 for more information on how to perform DFU updates

with a DFU capable application image.

The syntax to invoke the tool to create an output binary file with image header from an

input binary file is:

lpc11xx_secimgcr.exe <input file name.bin> <output file name.dfu>

The syntax in Fig 24 generates the CRC for the input application binary file

‘tst_11uxx_dfu.bin’ and creates an output file ‘test_app_crc.dfu’.

Fig 24. Image with CRC header

The CRC can be generated over the image header or over the entire length of the image.

NXP Semiconductors AN11732
 LPC11U3x/2x USB Secondary bootloader

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016 19 of 28

The syntax is:

lpc11xx_secimgcr.exe –n[1,2] <input file name.bin> <output file name.dfu>

-n – Indicates length of image over which CRC is generated. n1 is full application image

and n2 is just image header. If –n[1,2] parameter is not specified, the default is n1.

7.1.2 Creating a plain factory image

The DFU SBL is integrated inside the image creator tool. When using the factory image

option of the image creator tool, it will automatically use the integrated DFU SBL and

combine it with the input application image. The syntax to create a plain factory image is:

lpc11xx_secimgr.exe –n[1,2] –f <input file name.bin> <output file name.bin>

-n – Indicates length of image over which CRC is generated. n1 is full application image

and n2 is just image header. If –n[1,2] parameter is not specified the default is n1.

Fig 25 shows the generation of a plain factory image ‘plain_fac_img.bin’ from the input

application image ‘tst_11uxx_dfu.bin’.

Fig 25. Plain factory image generation

7.1.3 Generating key files for encryption

The image creator tool can automatically generate a random 128-bit encryption key. The

syntax to generate a key file is:

lpc11xx_secimgr.exe –g <key file name>

The syntax in Fig 26 generates a key file named ‘key’ which containing the encryption

key. This encryption key can be used to encrypt inputted application binaries when

generating and inserting a CRC or creating a factory image. The encryption algorithm is

XXTEA.

Fig 26. Key generation

NXP Semiconductors AN11732
 LPC11U3x/2x USB Secondary bootloader

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016 20 of 28

In addition to generating a key file this option produces the following three more files:

1. <key file name>_dis_sec – This file can be used to disable secure mode (CRP2)

on an already secure device (CRP2 enabled). This is useful in Return

Merchandise Authorization (RMA) analysis.

2. <key file name>_fctry_upd_sec – This file can be used to invoke USB ISP Mass

storage mode to reprogram a factory image in secure device (CRP2 enabled).

3. <key file name>_fctry_upd_uns- This file can be used to invoke USB ISP Mass

storage mode to reprogram a factory image in unsecure device (CRP disabled).

These files are sent to the device via the dfu-util when it is in SBL context. See Section

8.5 for information on how to send these files over the dfu-util.

NOTE: Store the key file in a safe location as the key file will be used in the future

for field firmware updates.

7.1.3.1 Generating an encrypted application image for field updates

The syntax to create an encrypted image with CRC header from plain image for field

update is:

lpc11xx_secimgr.exe –e <key file name> <input file name.bin> <output file name.dfu>

The image is encrypted with the 128-bit key file using the XXTEA encryption algorithm.

The syntax in Fig 27 generates the CRC for the input application binary file

‘tst_11uxx_dfu.bin’, encrypts the entire application binary and creates an output file

‘encrypted_app_img.dfu’.

Fig 27. Encrypted Image for Field Updates

7.1.3.2 Generating a secure factory image

The DFU SBL is integrated inside the image creator tool. When using the factory image

option of the image creator tool, it will automatically use the integrated DFU SBL and

combine it with the input application image. Supplying a key with the factory option will

automatically embed the key inside the SBL region of memory and enable CRP2. The

syntax to create a secure factory image is:

lpc11xx_secimgr.exe –f <key file name> <input file name.bin> <output file name.bin>

NXP Semiconductors AN11732
 LPC11U3x/2x USB Secondary bootloader

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016 21 of 28

In secure mode, CRC is mandatory to be calculated over the entire image length.

The syntax in Fig 28 generates a secure factory image ‘secure_fac_img.bin’ from the

input application image ‘tst_11uxx_dfu.bin’.

Fig 28. Secure factory image generation

8. Downloading files using DFU-UTIL

This application note provides a pre-compiled dfu-util executable on Windows, OS X, and

Ubuntu as well as script files to automate the DFU update process.

For more information on dfu-util and commands visit: http://dfu-util.sourceforge.net

Note: The dfu-util tools included in the package has been tested and verified with

DFU SBL. The dfu-util tools provided in the package contains a patch from NXP

Semiconductors.

8.1 Dfu-util tool platform dependencies

The dfu-util tool uses libusb in order to interface to DFU USB devices on the host

machine. For certain platforms, this will require some extra steps in order for the dfu-util

tool to function correctly.

8.1.1 Windows 7 requirements

Windows 7 does not natively support the DFU device class and will require a driver

installation before the dfu-util can be used. Please note that for Windows 8 and later, this

step is the necessary support was added by Microsoft.

When executing the test application, Windows 7 Device Manager should show an

unknown LPK device. See Fig 29.

http://www.nxp.com/redirect/dfu-util.sourceforge.net

NXP Semiconductors AN11732
 LPC11U3x/2x USB Secondary bootloader

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016 22 of 28

Fig 29. Device manager

Right click on the LPK device and click Update driver software. Choose the option

‘Browse my computer for driver software’. Input the path of the location where the folder

‘lpcdevice’ is present and click next. If the drivers are successfully installed, a TypeC

DFU device will appear under LpcDevice field in device manager.

See Fig 30.

Fig 30. TypeC DFU device

NXP Semiconductors AN11732
 LPC11U3x/2x USB Secondary bootloader

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016 23 of 28

8.2 OS X requirements

The libusb library is not provided in this package for OS X and must be installed

manually. Out of the box, OS X is very sandboxed, and so you must install a command

line command called “brew” to enable most of the typical Linux commands. To do so,

open terminal and copy and paste the following command. Follow the on-screen

installation directions:

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

Next, install libusb using brew with the following command:

brew install libusb

With libusb installed, the dfu-util tool can now be used.

8.3 Ubuntu requirements

The libusb library is not provided in this package for Ubuntu and must be installed

manually. Open terminal and copy and paste the following commands. Follow the on-

screen installation directions:

sudo apt-get install libusb-1.0-0:i386

Note: without setting up a udev rule, administrative privileges will be needed in order for

dfu-util to access USB devices. The script will prompt the computer’s password since the

sudo command is used so the dfu-util can perform the DFU update.

8.4 DFU update script

A script file for each of the three major x86 platforms is included: Windows, OS X, and

Linux. The DFU update script is implemented slightly different for each platform but

behaves the same. The script can be double clicked to execute in order to easily perform

the FW update. The script automatically searches for any .dfu files in the working

directory and will use the dfu-util tool to communicate with the MCU and perform a DFU

update. Only one .dfu can be present in the same directory as the script and will not

execute if it finds more than one.

Fig 31 shows the expected output if the script does not find only one .dfu in the working

directory.

Fig 31. Expected output if the script does not find one .dfu

Fig 32 shows the expected output when it successfully finds one .dfu and performs the

DFU detach to switch the MCU context to the DFU SBL, and then sends the new

application binary.

https://raw.githubusercontent.com/Homebrew/install/master/install

NXP Semiconductors AN11732
 LPC11U3x/2x USB Secondary bootloader

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016 24 of 28

Fig 32. Successful DFU update with the DFU script

8.5 Performing DFU updates manually

To manually update the FW through dfu-util, open command prompt or terminal and

navigate to the directory where the dfu-util executable is located. All the relevant dfu-util

commands are introduced in this section.

To detect if a valid DFU device is present type the command:

dfu-util_windows.exe -l

NXP Semiconductors AN11732
 LPC11U3x/2x USB Secondary bootloader

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016 25 of 28

Fig 33. List of dfu devices

To perform a field firmware update, the secondary bootloader needs to be invoked from

with the application context. Send a detach command from dfu-util:

dfu-util_windows.exe -e

Fig 34. DFU detach

After a detach command is sent, the MCU is in the SBL context. Firmware updates and

DFU commands can now be sent via dfu-util. For firmware updates, the process to

update with an encrypted binary or unencrypted binary is the same. The SBL will handle

the decryption of the encrypted binary if secure mode is enabled. Send the new

application image or DFU commands with the following command:

dfu-util_windows.exe –t 64 –D <DFU file>

The syntax shown in Fig 35 is the expected output when sending a new application

image with a valid CRC checksum.

NXP Semiconductors AN11732
 LPC11U3x/2x USB Secondary bootloader

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016 26 of 28

Fig 35. Field firmware update

In addition to sending new FW, the key that are generated by the image creator tool in

Section 7.1.3 can be sent as DFU commands. This the easiest way to perform factory

image updates in order to update the SBL or enable secure mode in the field.

Erro
r!

U
n

kn
o

w
n

d
o

cu
m

en
t

p
ro

p
erty

n
am

e
.

Erro
r! U

n
kn

o
w

n
 d

o
cu

m
en

t p
ro

p
erty n

am
e.

Erro
r! U

n
kn

o
w

n
 d

o
cu

m
en

t p
ro

p
erty

n
am

e.

NXP Semiconductors AN11732
 LPC11U3x/2x USB secondary bootloader

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 14 November 2016 27 of 28

9. Legal information

9.1 Definitions
Draft — The document is a draft version only. The content is still under

internal review and subject to formal approval, which may result in

modifications or additions. NXP Semiconductors does not give any

representations or warranties as to the accuracy or completeness of

information included herein and shall have no liability for the consequences

of use of such information.

9.2 Disclaimers
Limited warranty and liability — Information in this document is believed to

be accurate and reliable. However, NXP Semiconductors does not give any

representations or warranties, expressed or implied, as to the accuracy or

completeness of such information and shall have no liability for the

consequences of use of such information. NXP Semiconductors takes no

responsibility for the content in this document if provided by an information

source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,

punitive, special or consequential damages (including - without limitation -

lost profits, lost savings, business interruption, costs related to the removal

or replacement of any products or rework charges) whether or not such

damages are based on tort (including negligence), warranty, breach of

contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason

whatsoever, NXP Semiconductors’ aggregate and cumulative liability

towards customer for the products described herein shall be limited in

accordance with the Terms and conditions of commercial sale of NXP

Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make

changes to information published in this document, including without

limitation specifications and product descriptions, at any time and without

notice. This document supersedes and replaces all information supplied prior

to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,

authorized or warranted to be suitable for use in life support, life-critical or

safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected

to result in personal injury, death or severe property or environmental

damage. NXP Semiconductors and its suppliers accept no liability for

inclusion and/or use of NXP Semiconductors products in such equipment or

applications and therefore such inclusion and/or use is at the customer’s

own risk.

Applications — Applications that are described herein for any of these

products are for illustrative purposes only. NXP Semiconductors makes no

representation or warranty that such applications will be suitable for the

specified use without further testing or modification.

Customers are responsible for the design and operation of their applications

and products using NXP Semiconductors products, and NXP

Semiconductors accepts no liability for any assistance with applications or

customer product design. It is customer’s sole responsibility to determine

whether the NXP Semiconductors product is suitable and fit for the

customer’s applications and products planned, as well as for the planned

application and use of customer’s third party customer(s). Customers should

provide appropriate design and operating safeguards to minimize the risks

associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,

damage, costs or problem which is based on any weakness or default in the

customer’s applications or products, or the application or use by customer’s

third party customer(s). Customer is responsible for doing all necessary

testing for the customer’s applications and products using NXP

Semiconductors products in order to avoid a default of the applications and

the products or of the application or use by customer’s third party

customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein

may be subject to export control regulations. Export might require a prior

authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all

faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates

and their suppliers expressly disclaim all warranties, whether express,

implied or statutory, including but not limited to the implied warranties of non-

infringement, merchantability and fitness for a particular purpose. The entire

risk as to the quality, or arising out of the use or performance, of this product

remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be

liable to customer for any special, indirect, consequential, punitive or

incidental damages (including without limitation damages for loss of

business, business interruption, loss of use, loss of data or information, and

the like) arising out the use of or inability to use the product, whether or not

based on tort (including negligence), strict liability, breach of contract, breach

of warranty or any other theory, even if advised of the possibility of such

damages.

Notwithstanding any damages that customer might incur for any reason

whatsoever (including without limitation, all damages referenced above and

all direct or general damages), the entire liability of NXP Semiconductors, its

affiliates and their suppliers and customer’s exclusive remedy for all of the

foregoing shall be limited to actual damages incurred by customer based on

reasonable reliance up to the greater of the amount actually paid by

customer for the product or five dollars (US$5.00). The foregoing limitations,

exclusions and disclaimers shall apply to the maximum extent permitted by

applicable law, even if any remedy fails of its essential purpose.

9.3 Trademarks
Notice: All referenced brands, product names, service names and

trademarks are property of their respective owners.

NXP Semiconductors AN11732
 LPC11U3x/2x USB Secondary bootloader

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2016. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 14 November 2016

Document identifier: AN11732

10. Contents

Document information .. 1
1. Introduction ... 3
2. Package contents .. 3
3. Hardware environment 4
4. Development flow .. 5
4.1 Programming flow .. 6
5. Test application ... 9
5.1 Image header ... 10
6. Enabling DFU on LPC11U2x/3x application

projects .. 13
6.1 Secondary Boot Loader 13
6.1.1 Image header ... 14
6.2 Program Flow ... 14
7. Creating factory images and DFU update

capable images .. 18
7.1 Image creator tool .. 18
7.1.1 Inserting a CRC checksum in the application

image ... 18
7.1.2 Creating a plain factory image 19
7.1.3 Generating key files for encryption 19
7.1.3.1 Generating an encrypted application image for

field updates ... 20
7.1.3.2 Generating a secure factory image 20
8. Downloading files using DFU-UTIL 21
8.1 Dfu-util tool platform dependencies 21
8.1.1 Windows 7 requirements 21
8.2 OS X requirements ... 23
8.3 Ubuntu requirements .. 23
8.4 DFU update script .. 23
8.5 Performing DFU updates manually 24
9. Legal information .. 27
9.1 Definitions .. 27
9.2 Disclaimers... 27
9.3 Trademarks .. 27
10. Contents ... 28

	1. Introduction
	2. Package contents
	3. Hardware environment
	4. Development flow
	4.1 Programming flow

	5. Test application
	5.1 Image header

	6. Enabling DFU on LPC11U2x/3x application projects
	6.1 Secondary Boot Loader
	6.1.1 Image header

	6.2 Program Flow

	7. Creating factory images and DFU update capable images
	7.1 Image creator tool
	7.1.1 Inserting a CRC checksum in the application image
	7.1.2 Creating a plain factory image
	7.1.3 Generating key files for encryption
	7.1.3.1 Generating an encrypted application image for field updates
	7.1.3.2 Generating a secure factory image

	8. Downloading files using DFU-UTIL
	8.1 Dfu-util tool platform dependencies
	8.1.1 Windows 7 requirements

	8.2 OS X requirements
	8.3 Ubuntu requirements
	8.4 DFU update script
	8.5 Performing DFU updates manually

	9. Legal information
	9.1 Definitions
	9.2 Disclaimers
	9.3 Trademarks

	10. Contents

