AN11732

LPC11U3x/2x USB Secondary Bootloader
Rev. 1.2 — 14 November 2016 Application note

Document information

Info Content

Keywords LPC11U3x,LPC11U2x, secondary bootloader, image creator tool, DFU
utility, firmware update, field update

Abstract This application note introduces the image creator tool and DFU utility
programs to help facilitate the use of a DFU SBL with an LPC11U3x/2x
application to enable firmware updates in the field.

-
P |

NXP Semiconductors

Revision history

AN11732

LPC11U3x/2x USB Secondary bootloader

Rev Date Description

1.2 20161114 Updated the dfu-util tool

11 20160404 The application note was restructured and rewritten, dfu-util support for OS X and Linux
was added in addition to DFU update scripts for Windows, OS X and Linux.

1.0 20150828 Initial revision.

Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

AN11732

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note

Rev. 1.2 — 11 November 2016 2 of 28

http://www.nxp.com/
mailto:salesaddresses@nxp.com

NXP Semiconductors AN11732

LPC11U3x/2x USB Secondary bootloader

1. Introduction

The LPC11U3x/2x provides the user a convenient way to update the flash content in the
field for bug fixes or product updates. This can be achieved using the following two
methods:

e ISP: In-System programming mode can be used to program or re-program the
on-chip flash memory using the internal bootloader and UARTO serial port. This
can be done when the part resides on the end-user board.

¢ |IAP: In-Application programming performs erase and write operations on the
on-chip flash memory, as directed by the end-user application code.

A Secondary Bootloader (SBL) is a piece of code that allows a user application code to
be downloaded using alternative channels other than the standard UARTO used by the
internal bootloader. The primary bootloader is the firmware that resides in the
microcontroller’s boot ROM block and is executed on power-up and resets. After the boot
ROM'’s execution, the secondary bootloader would be executed, which will then execute
the end-user application.

The purpose of this document is to explain how to use the two tools provided by NXP to
easily incorporate a Device Firmware Update (DFU) SBL with any given
LPC11U2x/LPC11U3x application binary.

2. Package contents

AN11732

The extracted contents of the package should look like the following:

Mame ¥ Type Compressed size Password ...
J dfu-util File folder
J Drivers File folder
/| image-creator-tool File folder
/| Sample binaries File folder
| test-app File folder
@ AN11305v.1.pdf Adobe Acrobat Document 2I5KB Mo

Fig 1. Package contents

A brief description for each of the folder is explained here:

1. dfu-util — This folder contains the dfu-util tool with source available from
http://dfu-util.gnumonks.org/. It is used to interface with the SBL through DFU.
Windows, OS X, and Linux operating system each have a dfu-util tool.

2. Drivers — This folder contains the “Ipcdevice” drivers (including USB descriptors)
that must be installed in order for a Windows 7 machine to successfully detect
the DFU mode used on the LPC11U3x/2x.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note

Rev. 1.2 — 11 November 2016 3 of 28

NXP Semiconductors

5.

AN11732

LPC11U3x/2x USB Secondary bootloader

image-creator-tool — This folder contains the Ipc11xx_secimgcr.exe program
that is used to create encryption keys, generating and inserting a valid CRC,
encrypting firmware images and generating factory images. The DFU SBL is
embedded inside this tool.

Sample binaries — This folder contains sample binaries of all of the files that can
be generated with the image creator tool.

a.

tst_11uxx_dfu.bin — Sample application binary that was used to create all
the sample firmware images in this folder.

secure_fac_img.bin — Secure factory image, which is a merged image of
the DFU SBL with CRP2 activated + application binary that has been
encrypted with the ‘key’ file in this folder. CRC is generated and inserted
into application binary. Key file is placed in SBL region of memory so it
can decrypt the application code.

plain_fac_img.bin — Plain factory image, which is a merged image of the
DFU SBL with no CRP enabled + unencrypted application binary. CRC is
generated and inserted into application binary.

test_app_crc.dfu — Unencrypted application binary with CRC generated
and inserted.

encrypted_app_img.dfu — Application binary with CRC generated and
inserted, encrypted with the ‘key’ file in this folder

key — Key file, which is used to encrypt and decrypt the application
binary. The ‘key’ file used to encrypt any given application image must
also be used by the SBL to decrypt.

key_dis_sec — This file is used by the dfu-util.exe. Sending this file via
dfu-util will turn off CRP2 of a secure factory image making the factory
image unsecure. This file will be rejected by unsecure factory images.

key_fctry_upd_sec — This file is used by the dfu-util.exe. Sending this file
via dfu-util to a secure factory image will re-invoke USB ISP mode so

that the MCU will enumerate itself as a MSC (mass storage class) device.
This file will be rejected by unsecure factory images.

key_fctry _upd_uns — This file is used by the dfu-util.exe. Sending this file
via dfu-util to an unsecure factory image will re-invoke USB ISP mode so
that the MCU will enumerate itself as a MSC device.

test-app — This folder contains a Keil project for the test application.

3. Hardware environment

The sample test application was tested using Keil MDK IDE v.5.14.0.0 and the NGX
LPC11U24/301 board (#0M13033) and LPC11U37 LPCXpresso board (#OM13074).

For more information on these boards, visit the following links:
http://www.nxp.com/board/OM13033.html

AN11732

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note

Rev. 1.2 — 11 November 2016 4 of 28

http://www.nxp.com/board/OM13033.html

NXP Semiconductors AN11732

LPC11U3x/2x USB Secondary bootloader

http://www.nxp.com/board/OM13074.html

The DFU SBL has been tested and deployed in real solutions such as NXP’s USB Type-
C 1 - 3 Multiport Adapter. The sample test application has not been tested on LPC11U1x.

Diaitsl

i

Fig 2. LPCXpresso board for LPC11U37H

Fig 3. NXP USB Type-C 1 - 3 multiport adapter

4. Development flow

To enable DFU updates for a given application:

1) Modify the existing application to support the DFU SBL. This includes reserving
flash and SRAM for the SBL, adding an image header to the application binary,
enumerating the MCU as a DFU device, and supporting the DFU detach
command to context switch from the application to SBL. See Section 5 for
information on the test application, which can be used as a base for a USB

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016 5 of 28

http://www.nxp.com/board/OM13074.html

NXP Semiconductors AN11732

AN11732

LPC11U3x/2x USB Secondary bootloader

application that is compatible with the DFU SBL. See Section 6 for information on
how to integrate the requirements for the DFU SBL in an existing application.

2) Use the image creator tool to modify the application binary. While the DFU SBL
is not provided in the form of a project or binary, it is embedded in the image
creator tool. To add the SBL into an application, use the image creator tool to
combine the DFU and application binary into one binary, which is called a factory
image. The image creator tool is also used to generate and insert a CRC
checksum into the image header region of the application binary. Optionally, the
image creator tool can generate encryption keys and use these keys to encrypt
application images. See Section 7 for more information on the image creator tool.

3) Use the dfu-util executable or provided DFU scripts to perform a DFU update by
issuing a detach command, and then sending updated application binary. See
Section 8 for more information.

After all of these steps have been completed, the field updates with the DFU SBL follow
the flow chart shown in Fig 4.

| Application

| Execution

N Detach command is sent
0 ;)
, Via dfu-util.

Power Cycle
Execution

The new application
image is sent via dfu-
util. Decrypt first if the
SBL is in secure mode.

Valid
image
header?

(Flash writing
state

Fig 4. Field update flow

4.1 Programming flow

With a DFU SBL capable application binary, the image creator tool should be used to
create factory image and application binaries with valid CRC checksums. While both
factory images and DFU capable application codes are essentially binaries, factory
images will end with a .bin extension while DFU capable files end in a .dfu. This
differentiation is not needed when using either the image creator tool or dfu-util tool but
helps minimize confusion.

Fig 5 shows an example of the process of creating a secure factory image.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note

Rev. 1.2 — 11 November 2016 6 of 28

NXP Semiconductors AN11732

LPC11U3x/2x USB Secondary bootloader

Encrypted

FR— application
pplication | | ey File image
ey | [Key File 0

Image Creator Factoryw
Tool Image

- 0x2000
SBL with
encryption
key
0x0

Fig 5. Creating a secure factory image

Fig 6, Fig 7, and Fig 8 illustrate the programming flow at different stages:

Factory image programming flow

Use image creator tool to create a factory image
with the application image

Connect the device to the PC. The MCU should
enter USB ISP mode and enumerate as a MSC
device since the flash is empty.

Flash the MCU with factory image

Disconnect and reconnect the device to execute
application image

Fig 6. Factory programming flow

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016 7 of 28

NXP Semiconductors

AN11732

AN11732

LPC11U3x/2x USB Secondary bootloader

Fig 7.

Factory image update flow

Use dfu-util to boot MCU into SBL by detaching
the current DFU device

Use dfu-util to send the factory update file:
For secure factory images, send
<key file name> upd sec
For unsecure factory images, send
<key file name> upd uns

Target re-invokes USB ISP mode and enumerates
as MSC device

Flash the MCU with updated factory image

Disconnect and reconnect the device to execute
application image

Field factory image update flow

Fig 8.

Field update flow

Use dfu-util to boot MCU into SBL by detaching
the current DFU device

Use dfu-util to send the updated application
image:

For secure factory images, send encrypted
application images using the same key that was
used for the secure factory image.

For unsecure factory images, generate and insert
a CRC first.

Field firmware update flow

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2016. All rights reserved.

Application note

Rev. 1.2 — 11 November 2016

8 of 28

NXP Semiconductors AN11732

LPC11U3x/2x USB Secondary bootloader

5. Test application

A simple blinky project that has all the settings configured to enable DFU updates is
provided. It toggles PIO1_26, which is LED D2 on the LPC11U37 LPCXpresso board.

To see the necessary code that needs to be added to an existing USB project, please
see Section 6.

The DFU SBL occupies the first two sectors of the user flash which means the test
application is present at an offset 0x2000. Fig 9 shows the Keil Options for the target
window. The SBL uses first 512 bytes of RAM from address 0x10000000, that is, from
0x10000000 to 0x10000200. This RAM space is used only when the DFU SBL is invoked
from the application. This space can be used by the application but will be corrupted
once the DFU SBL is invoked.

Device TEVQEllomputl L\stmgl User | CIC-H—I Asm I Lmkerl Debugl Utllmesl
NXP LPC11U35FBDG4/401
— Code Generation
Xtal (MHz) ARM Compiler: IUse latest installed version LI
Operating system INone LI
System Viewer File: [~ Use Cross-Module Optimization
ILPCTTUﬂ.svd J [~ Use MicroLIB [~ Big Endian
[Use Custom File
—Read/Only Memory Areas —Read/Write Memory Areas
default off-chip Start Size Startup default off-chip Start Size Naolnit
~ Rowmt | | c I Rawt: | | r
[~ ROMZ: | | c I RaMmz | | -
[~ ROM3: | | c I~ RAM3: | | m
on-chip on-chip
% IRowm1: [02000 "ncmu & [IRamr: [0x10000200 [0xiCO0 r
[~ IROMZ: | | C I RaMZ |Mmmm |0x8m r
ok | cancel | Defauts | Help
Fig 9. Target settings

Fig 10 shows the *.ini file of the test application.

FUNC void Setup (void) {

5P = RDWORD(0x00002000);

PC = RDWOED (0x00002004);

_WDWORD (0x40048000, 0x00000001); // MEMMRE = 1
}

LORD %1 INCREMENTAL // Download
Setup(); // Setup for Running
g, main

Fig 10. *.ini file of test application

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016 9 of 28

NXP Semiconductors AN11732

AN11732

5.1

LPC11U3x/2x USB Secondary bootloader

Build the project by clicking Project->Build. After the build is completed, a binary file
‘tst_ 11uxx_dfu.bin’ is generated in the ‘keil output’ folder.

See Fig 11 for the linker script generated by the test application.

R N N N N N N N N A A A A A A A A A A A A A A A A A AR AN AN NN NN NN NN R R RN

*%% Scatter-Loading Description File generated by uVision *#%
N N N N N N N AN N N N A N A N A AN A AR A AR R AR NRT RN RTRR

LR_IRCM1 0x00002000 0x0001C000 { i load region size region
ER TROM1 0x00002000 0x0001cC0O00 { ; load address = execution address
*.0 (RESET, +First)
* (InRootS5SSections)
.LNY (+RO)
}
RW IRAM1 0x10000200 0x00001C00 { ; RW data
LBNY (+RW +ZI)
}

Fig 11. Linker script test application

Image header

The image header is stored in the memory region 0x100 — 0x117. This image header is
used to indicate that it is a DFU capable application binary. This header contains
necessary information for the SBL, such as the pin configuration table, CRC length, and
CRC checksum. When the DFU SBL is re-invoked from the test application, the test
application sends a pin configuration table ‘PINONLYCFGTABLEFLASH’ and USB
descriptors of the test application to the SBL. See the SBL invoke function
‘bootSecondaryLoader ()’ in the ‘usbd_dfu.c’ file. These parameters can be updated by
the user.

Fig 12 shows the image header located in the Keil startup file.

IMG HEADER DCD OXFEEDASAS ; Image header marker
; DCB 0 ; img_type: See img type values above
; DCB 0, 0, 0 ; Reserved
;DCD 0XFFFFFEFF ; Reserved

EXPORT PINONLYCFGTABLEFLASH

its 7:5) and pins (bi
DCB 0MA((0 << 9) + B)"((0 << 9) + 13)~((0 << 5) + 12)~((0 << 3) + 14)~
EXPORT CRC32Z_LEN
EXPORT CRC32 VAL

PINONLYCFGTABLEFLASH
DCB 0 ; img type: See img type values above
DCB 4 ; ifSel: Interface selection for host (0=RUTODETECT, 1=I12C0, 2=I2C1, 3=I2C2, 4=3
DCB {(0 << 5) + 8); hostIrgPortPin: Host IRQ port (bits 7:5) and pins (bits 4:0)
DCB ({0 << 5) + 13); hostMisoPortPin: SPI MISO port (bits 7:5) and pins (bits 4:0)
DCB ({0 << 5) + 12); hostMosiPortPin: SPI MOSI port (bits 7:5) and pins (bits 4:0)
DCB ({0 << 5) + 14); hostSselPortPin: SPI SEL port (bits 7:5) and pins (bits 4:0)
DCB ({1 << 5) + 3); hostSckPortPin: SPI SCK port (b 7 its 4:0)
({1 << 35) +3)

CRC32 LEN DCD ; Length for CRC32 check starting at offset 0, in 32-bit words
CRC327VAL DCD ; CRC32 value
FW_VERSION DCD ; Firmware version number

Fig 12. Image header

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note

Rev. 1.2 — 11 November 2016 10 of 28

NXP Semiconductors

AN11732

AN11732

LPC11U3x/2x USB Secondary bootloader

When SBL is invoked, the USB descriptors are also passed as another parameter from
the test application to the SBL. The USB Vendor ID (VID) passed is 0x1FC9 and USB
Product ID (PID) is 0x5002. See ‘enter_DFU_SL() in ‘usbd_dfu.c’ file. The USB string

descriptors that are passed are defined in ‘usbd_desc.c’ file of the test application.

The USB string descriptors in the test application contains Index 0 to 5. Index 0x00

indicates the Length of the descriptor, descriptor type and language id.

/¥* Index 0x00: LANGID Codes */

0x04, /* bLength */
USB_STRING_DESCRIPTOR_TYPE, [* bDeSCZ"_ptOl‘Type L
WBVAL (0x040%), /% US English */ /* WLBNGID */

Fig 13. Index 0x00 of string descriptors

Index 0x01 indicates Manufacturer details.

/* Index 0x01: Manufacturer */

(18 * 2 + 2), /* blLength (13 Char + Type + lenght) */
USB_STRING DESCRIFTCR_TYPE, /* bDescriptorType */

‘N, O,

'X', 0

Las]
-
[e T T T s s e T T o e T T e

mm o om o mom m s m m o om mm o om o m om mm

(=]

Fig 14. Index 0x01 of string descriptors

Index 0x02 contains the product name. Here it is ‘LPK’.

/¥* Index 0x02: Product */

(3 * 2 + 2)

USBE STRING DESCEIPTOR TYPE, /* b]:es::ipto:':‘ype ®/
ILIT E! - -

IPI! E!

IKI!

]

r

Fig 15. Index 0x02 of string descriptors

. /* bLength (3 Char + Type + lenght)

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note

Rev. 1.2 — 11 November 2016

11 of 28

NXP Semiconductors

AN11732

LPC11U3x/2x USB Secondary bootloader

Index 0x03 contains the serial number of the device.

/* Index 0x03:
(13 * 2 + 2),

USB_STRING DESCRIPTOR TYPE, /* bDescriptorType */

‘A, O,
'B', 0
'cr, 0
'D', O
1, 0
I2Il CI
I3Il’ C]’
0
0
0
0
0
0

r
r
r

r

I4I;
I5I’
|6|]r
I?I!
ISI,
|9|’

r

r

r

r

r

r

Fig 16. Index 0x03 of string descriptors

Serial Number */
/* bLength (13 Char + Type + lenght) */

Index 0x04 indicates the name of interface 0. The test application uses ‘DFU’ as interface
0.

/* Index 0x04:
(3 * 2+ 2),

USBE STRING DESCRIPTCER TYPE, /* bDescriptorType */

'D", C,
'F', C,
IU'; Cr

Fig 17. Index 0x04 of string descriptors

Interface 0, Rlternate Setting 0 */
/* bLength (3 Char + Type + lenght) */

Index 0x05 indicates the name of interface 1. The test application uses a billboard class
device ‘BILLBOARD’ as interface 1.

AN11732

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note

Rev. 1.2 — 11 November 2016 12 of 28

NXP Semiconductors AN11732

LPC11U3x/2x USB Secondary bootloader

/* Index 0x05: Interface 1, Rlternate Setting 0 */
(o * 2 + 2), /* bLength (9 Char + Type + lenght) */
USB_STRING_DESCRIPTOR_TYPE, [*® bDeS:IiptOl‘Type ®/
'B', 0

I 0
'L', 0
ILI! 0
'B', 0
'O', 0
'P_', 0
'R', 0
IDI! 0

Fig 18. Index 0x05 of string descriptors

The above string descriptors can be updated by the user.

USB device descriptors, Billboard class descriptors, and WCID handlers are present in
the test application ‘usbd_desc.c’ file. The WCID handler enables the MCU to enumerate
on Windows 8 and later without a driver. For Windows 7, Ipcdevice drivers have been
provided with the package in the ‘Drivers’ folder.

6. Enabling DFU on LPC11U2x/3x application projects

AN11732

6.1

This section shows how to add in-field firmware update capability using Device Firmware
Upgrade (DFU) class interface to an existing USB application. To enable DFU capability
a Secondary Boot Loader (SBL) is implemented for LPC11U3x/2x which does image
integrity check during booting and DFU method to update the application image.

Secondary Boot Loader

The Secondary Boot Loader (SBL) described and implemented in this application note
provides a solution for in-field update of USB application implemented on LPC11U3x/2x.
It utilizes the boot ROM’s USB and IAP API functionalities to program LPC11U3x/2x flash.
The SBL occupies the first two sectors of user flash and contains routines to perform the
following functionalities:

e Application image CRC checking: During boot time, the SBL computes the
CRC32 of the application image and checks it against the value stored in the
image header. SBL will execute the application image only if CRC check passes.
This check is required to avoid booting partially programmed or corrupted images.
Partial or corrupted images could be formed due to power failures during
firmware update.

e Vector redirection: LPC11U3x/2x is an ARM Cortex-MO0 based microcontroller,
which expects the vector table to be at address 0x0. Since the first sector of the
flash resides at that location, the SBL implements a vector redirector to redirect
the exception and interrupt handling to application image.

e DFU class handler: USB.org has defined DFU class specification as a firmware
update method for USB applications. SBL handles all the USB control messages
to do firmware update.

e Security: The SBL supports download of encrypted images. When a secure key
is programmed in the device the SBL sets the CRP level of the part to CRP2,
preventing debug access and ISP capabilities. Any firmware update or flash

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note

Rev. 1.2 — 11 November 2016 13 of 28

NXP Semiconductors AN11732

6.1.1

6.2

AN11732

LPC11U3x/2x USB Secondary bootloader

programming is only possible through the application which is already
programmed in flash.

e DFU API: To eliminate the overhead of implementing DFU protocol in application
code, the SBL exposes DFU API. Applications can use this API to invoke DFU
mode.

e SBL update: SBL also implements a mechanism to update its firmware using
ROM’s re-invoke USB ISP method.

Image header

For the application to be a valid binary for a DFU SBL, a proprietary image header must
be in the memory region 0x100 — 0x117. Refer to the Keil start up file used in the test
application provided in this application note. Fig 7 shows a snapshot of the image
header.

Program Flow

The DFU can be enabled after the USB is normally initialized, making it easy to integrate
into an existing project. To enable the DFU, a WCID handler should be registered to
allow for automatic driver installation on Windows 8 and DFU initialization function should
be executed. Upon receiving a detach command, the MCU should wait a couple
milliseconds to ensure the device successfully detached from the host. Another function
should be called in order to redirect the MCU back to the SBL. This is shown in Fig 19.

MCU startup including clock and USB
initialization

A 4

Register WCID Handler

(facilitates automatic DFU driver installation)

Execute usb_dfu_init()

Normal
application
operation

Detach command from dfu-util

Busy wait to ensure successful
detach and boot back to SBL

Fig 19. Program flow with DFU enabled

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note

Rev. 1.2 — 11 November 2016 14 of 28

NXP Semiconductors AN11732

LPC11U3x/2x USB Secondary bootloader

There are three source files from the test application project that have the required
source code: main.c, usbd_desc.c, and usbd_dfu.c. In ‘main.c’ after initializing the USB,
the WCID handler should be registered and the usb_dfu_init() function should be
executed. See Fig 20.

|_'] usbd_dfu.c d usbd_desc.c d main.c d app_usbd_cfg.h

276 I usbk param.USE Configure Event = USE Configure Event;

277

278 /* Set the USE descriptors =/

279 desc.device desc = (uint8_t *) &USE_DeviceDescriptor:

280 desc.string desc = (uinti_t *) &USE_StringDescriptor([0]:

281 [J* Note, to pass USBCV test full-speed only devices should have both

282 * descriptor arrays point to same location and device_gualifier set

283 * ta 0.

284 - *f

285 desc.high speed deszc = (uintg8_t *) &USE_FsConfigDescriptor[0]:

286 desc.full_ speed desc = (uintg8_t =) &USE_FsConfigDescriptor[0];

287 desc.device_qualifier = 0d;

288

289 /* USB Initialization */

280 ret = USBD RPI->hw->Init (&g hUsb, &desc, fusk param):

281 [4if (ret == LPC OK) {

232

293 /* Link Power Management is supported. */

2394 LEC USE->DEVCMDSTAT |= (O0xl<<ll);

295 LPC_USB->LPM |= (0x2<<4);/* RESUME duration. */

2%6

297 [J# WOREAROUND for artf32219 ROM driver BUG:

238 The mem base parameter part of USE param structure returned

289 by Init () routine is not accurate causing memory allocation issues for

300 further components.

301 ®/

302 usb_param.mem base = USE_STACK MEM BASE + (USBE_STACK MEM SIZE - usb param.mem sSize);
2

304 /* register WCID handler */

305 ret = USED API->core-»RegisterClassHandler (g_hUsk, WCID hdlr, 0);

306

307 ret = usk dfu init(g_hUsk,

308 (USE_INTERFACE DESCRIPTOR *) &USE_FzConfigDescriptor[sizecf (USE_CONFIGURATION DESCRIFPTCR)],

309 &usb_param.mem base, &usb_param.mem size);

.

311 0 if (ret == LPC_OK) {

312 J* enable USE interrupts =/

313 NVIC EnableIRQ (USBO_IRQn);

314 /* now connmect */

315 USBD API->hw->Connect (g hUsb, 1):

Fig 20. WCID handler and usb_dfu_init()

AN11732

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016 15 of 28

NXP

Semiconductors

AN11732

LPC11U3x/2x

Add the definition of WCID event handler. See Fig 21.

USB Secondary bootloader

1322
193
194
185
1986
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
228
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

/% Handler for WCID USB device requests. */
static ErrorCode_t WCID hdlr (USED HANDLE T hUsbk, wvoid *data, uint32_t event)
i
USB_CORE_CTRL_T *pCtrl = (USB_CORE CTRL T *) hisb:
ErrorCode t ret = ERR_USBD UNHANDLED;
/* Handle Microsoft's WCID reguest for install less WinUSB operation.
Check https://github.com/pbatard/libwdi/wiki/WCID-Devices for more details.
=/
if (event == USB EVT SETUP) {
= switch (pCtrl->SetupPacket.bmRequestType.BM.Type) {
cage REQUEST STANDARD:
if ((pCtrl->SetupPacket.bmRequestIype.BM.Recipient == REQUEST_TO DEVICE) &&
(pCtrl->SetupFacket.bRequest == USE REQUEST_GETI_DESCRIPTOR) &&
(pCtrl->5SetupPacket.wValue.WE.H == USB_STRING_DESCRIPTOR TYPE) &&
= (pCrtrl->SetupPacket.wValue.WB.L == Ox00EE)) {
pCtrl->EPOData.pData = (uintf_t *) WCID String Descriptor;
pCtrl->EPOData.Count = pCtrl-»SetupPacket.wlength;
USBD_API->core->DatalnStage (pCtrl);
ret = LPC_CK;
= }
break;
case REQUEST_ VENDOR:
= if (pCtrl->SetupPacket.bRequest != WCID VENDOR CODE) {
break;
}
switch (pCtrl->»SetupPacket.bmRequestType.BM.Recipient) {
case REQUEST TO DEVICE:
= if (pCtrl->SetupPacket.wIndex.W == 0x0004) {
pCtrl->EF0Data.pbata = (uint&_t *) WCID CompatID Descriptor;
pCtrl->EP0Data.Count = pCtrl->5etupPacket.wlength;
USBD_APFI->core->DatalnStage (pCtrl);
ret = LPC_OK:
= }
= /* Fall-through. Check notel of
htcps://github.com/pbatard/1ibwdi/wiki/WCID-Devicesfwiki-Defining a Device Interface GUID_ .
break;
=/
case REQUEST_TO INTERFRCE:
= if (pCtrl->SetupPacket.wIndex.W == 0x0005) {
pCtrl->EPF0Data.plata = (uint&_t *) WCID_ExtProp_Descriptor;
pCtrl->EP0Data.Count = pCtrl->5etupPacket.wlLength;
USED_API->core->DatalnStage (pCtrl);
ret = LPC OK:
= }
break;
= H
break;
o}
r}
return ret;
}

Fig 21. WCID event handler

or_other_device_specific_properties

AN11732

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2016. All rights reserved.

Application note

Rev. 1.2 — 11 November 2016

16 of 28

NXP Semiconductors

AN11732

LPC11U3x/2x USB Secondary bootloader

To handle a detach, a ‘dfu_detach_sig’ variable is used as a flag. This is declared as a
global variable in ‘usbd_dfu.c’ file and also should be declared as an external variable in
the ‘app_usbd_cfg.h’ file, along with other DFU related variables and functions. See Fig

22.
_1 usbd_dfu.c j usbd_desc.c _] main.c _] app_usbd_cfg.h

6l | fdefine USE F5 MAX BULE PACKET &4 f*1< MAXP for
62 | 7define USE_HS MAX BULK PACKET 512 /#l< MBXP for
63 | fdefine USE_DFU XFER SIZE 64
64
85 | /* USB descriptor arrays defined * _desc.c file */
&6 extern USE DEVICE DESCRIPTCOR USE DeviceDescriptor:
67 | extern uintg t USE HsConfigDescriptor([]:
68 extern const uintd t USE_FsConfiglescriptor([]:
69 | extern const uinté t USE StringDescriptor[]:
T0 extern const uint8 t USE DeviceQualifier(]:
71 extern const uinté t WCID String Descriptor([]:
72 | extern const uintf t WCID CompatID Descriptor[]:
73 extern const uintd t WCID ExtProp Descriptor[]:
74 | extern uinté t USBE BOSDescriptor(]:
T
T6 fdefine USE _BOSDescriptorSize E0
T7 fdefine WCID String DescriptorSize 18
T8 fdefine WCID CompatID Descriptor3ize 40
T8 fdefine WCID ExtProp DescriptorSize 146
80
81 extern void enter DFU SL(USED HANDLE T hUsb):
82 extern ErrorCode t usb dfu init (USED HANDLE T hUsb,
83 USE_TINTERFACE DESCRIPTOR *pIntfDesc
84 uint32 t *mem base,
85 uint32_t *mem size);

D 86 | extern wvolatile uint32 t dfu detach sig;
o _ - _

Fig 22. Defining all the DFU variables as external

To handle detach event and boot the SBL, simply polling the ‘dfu_detach_sig’ flag until it
becomes a non-zero value is sufficient. Calling the function enter_DFU_SL() will turn off
the USB and may cause the detach event to not be successful between host and device.
Therefore, a delay is recommended before calling enter_DFU_SL() function. See Fig 23.

3149 while (1) {

320 if (dfu_detach sig)

321 {

322 [for (1 = 0; 1 < 0x4000; i++)
323 J% wait before detach =/
3249 H

325 enter DFU SL{g_hUsb):

326 H

327 1 else |

328 __WFI():

329 H

330

331 H

Fig 23. Polling the detach signal

{

AN11732

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2016. All rights reserved.

Application note

Rev. 1.2 — 11 November 2016

17 of 28

NXP Semiconductors AN11732

LPC11U3x/2x USB Secondary bootloader

7. Creating factory images and DFU update capable images

The image creator tool is a command line only tool that can be used for the Windows
platform. This tool has the DFU SBL embedded inside and can prepend inputted
application binaries with the SBL when using the factory command. The image creator
tool is also used to calculate and add a CRC checksum into the application binary to
make it a DFU update capable application image. The image creator tool can also
generate encryption keys. These encryption keys are used in conjunction with the secure
mode that the image creator tool and SBL support. When using this secure mode while
generating a factory image, the inputted encryption key is used to encrypt the application
binary with the XXTEA algorithm while storing the encryption key in the SBL. To provide
additional security, the Code Read Protection (CRP) level 2 of the MCU will also be
enabled.

7.1 Image creator tool

The image creator tool is provided in the ‘image-creator-tool’ folder. Open the command
prompt and navigate to the directory where the executable is located.

7.1.1 Inserting a CRC checksum in the application image

To make an application image acceptable to the DFU SBL, add a CRC checksum to the
application binary. See Section 8.4 for more information on how to perform DFU updates
with a DFU capable application image.

The syntax to invoke the tool to create an output binary file with image header from an
input binary file is:

Ipcllxx_secimgcr.exe <input file name.bin> <output file name.dfu>

The syntax in Fig 24 generates the CRC for the input application binary file
‘tst_11uxx_dfu.bin’ and creates an output file ‘test_app_crc.dfu’.

app_crc.dfu
P

. i

ortPin
PortPin
PortPin
PortPin
kPortPin

Fig 24. Image with CRC header

The CRC can be generated over the image header or over the entire length of the image.

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.
Application note Rev. 1.2 — 11 November 2016 18 of 28

NXP Semiconductors AN11732

LPC11U3x/2x USB Secondary bootloader

The syntax is:
Ipcllxx_secimgcr.exe —n[1,2] <input file name.bin> <output file name.dfu>

-n — Indicates length of image over which CRC is generated. nl is full application image
and n2 is just image header. If —n[1,2] parameter is not specified, the default is n1.

7.1.2 Creating a plain factory image

The DFU SBL is integrated inside the image creator tool. When using the factory image
option of the image creator tool, it will automatically use the integrated DFU SBL and
combine it with the input application image. The syntax to create a plain factory image is:

Ipcllxx_secimgr.exe —n[1,2] —f <input file name.bin> <output file name.bin>

-n — Indicates length of image over which CRC is generated. n1 is full application image
and n2 is just image header. If —n[1,2] parameter is not specified the default is n1.

Fig 25 shows the generation of a plain factory image ‘plain_fac_img.bin’ from the input
application image ‘tst_11uxx_dfu.bin’.

er Image
92, application bina

IrgPortPin

il qF-‘m'tP'! n
1 F-‘cur'tP'!ﬂ

Fig 25. Plain factory image generation

7.1.3 Generating key files for encryption

The image creator tool can automatically generate a random 128-bit encryption key. The
syntax to generate a key file is:

Ipc11xx_secimgr.exe —g <key file name>

The syntax in Fig 26 generates a key file named ‘key’ which containing the encryption
key. This encryption key can be used to encrypt inputted application binaries when
generating and inserting a CRC or creating a factory image. The encryption algorithm is
XXTEA.

sting=lpcllxx_secimgcr.ex

LPC11xx Secondary Boot Loader Im:

Fig 26. Key generation

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.
Application note Rev. 1.2 — 11 November 2016 19 of 28

NXP Semiconductors AN11732

7.131

LPC11U3x/2x USB Secondary bootloader

In addition to generating a key file this option produces the following three more files:

1. <key file name>_dis_sec — This file can be used to disable secure mode (CRP2)
on an already secure device (CRP2 enabled). This is useful in Return
Merchandise Authorization (RMA) analysis.

2. <key file name>_fctry upd_sec — This file can be used to invoke USB ISP Mass
storage mode to reprogram a factory image in secure device (CRP2 enabled).

3. <key file name>_fctry _upd_uns- This file can be used to invoke USB ISP Mass
storage mode to reprogram a factory image in unsecure device (CRP disabled).

These files are sent to the device via the dfu-util when it is in SBL context. See Section
8.5 for information on how to send these files over the dfu-util.

NOTE: Store the key file in a safe location as the key file will be used in the future
for field firmware updates.

Generating an encrypted application image for field updates

The syntax to create an encrypted image with CRC header from plain image for field
update is:

Ipcllxx_secimgr.exe —e <key file name> <input file name.bin> <output file name.dfu>
The image is encrypted with the 128-bit key file using the XXTEA encryption algorithm.

The syntax in Fig 27 generates the CRC for the input application binary file
‘tst_11uxx_dfu.bin’, encrypts the entire application binary and creates an output file
‘encrypted_app_img.dfu’.

u.bin encrypted_app_img.dfu

Fig 27. Encrypted Image for Field Updates

7.1.3.2 Generating a secure factory image

AN11732

The DFU SBL is integrated inside the image creator tool. When using the factory image
option of the image creator tool, it will automatically use the integrated DFU SBL and
combine it with the input application image. Supplying a key with the factory option will
automatically embed the key inside the SBL region of memory and enable CRP2. The
syntax to create a secure factory image is:

Ipc11ixx_secimgr.exe —f <key file name> <input file hame.bin> <output file name.bin>

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note

Rev. 1.2 — 11 November 2016 20 of 28

NXP Semiconductors AN11732

LPC11U3x/2x USB Secondary bootloader

In secure mode, CRC is mandatory to be calculated over the entire image length.
The syntax in Fig 28 generates a secure factory image ‘secure_fac_img.bin’ from the
input application image ‘tst_11uxx_dfu.bin’.

fu.bin secure_fac_img.bin
?

i

ntire file!
Ox100
it alignment, adding 4096 bytes

IrgPortPin

soPortPin
iPortPin
1PortPin

Fig 28. Secure factory image generation

8. Downloading files using DFU-UTIL

This application note provides a pre-compiled dfu-util executable on Windows, OS X, and
Ubuntu as well as script files to automate the DFU update process.

For more information on dfu-util and commands visit: http://dfu-util.sourceforge.net

Note: The dfu-util tools included in the package has been tested and verified with
DFU SBL. The dfu-util tools provided in the package contains a patch from NXP
Semiconductors.

8.1 Dfu-util tool platform dependencies

The dfu-util tool uses libusb in order to interface to DFU USB devices on the host
machine. For certain platforms, this will require some extra steps in order for the dfu-util
tool to function correctly.

8.1.1 Windows 7 requirements

Windows 7 does not natively support the DFU device class and will require a driver
installation before the dfu-util can be used. Please note that for Windows 8 and later, this
step is the necessary support was added by Microsoft.

When executing the test application, Windows 7 Device Manager should show an
unknown LPK device. See Fig 29.

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.
Application note Rev. 1.2 — 11 November 2016 21 of 28

http://www.nxp.com/redirect/dfu-util.sourceforge.net

NXP Semiconductors AN11732

LPC11U3x/2x USB Secondary bootloader

File Action View Help

&= @B HE| 8 F %S

;- B Display adapters
B &g Human Interface Devices
; %5 Imaging devices
“2F Jungo Connectivity
-ZZ Keyboards
- § libusb-win32 devices
--ﬂ Mice and other pointing devices
'_-;; Monitors
J&F Network adapters
‘ li" Bluetooth Device (Personal Area Network)
l_-? Bluetooth Device (RFCOMM Protocol TDT)
l__l Intel(R) Dual Band Wireless-AC 7260
li" Intel(R) Ethernet Connection 1218-LM
E¥ Juniper Networks Virtual Adapter Manager
4 -|[f5) Other devices
el LR
Iy Ports (COM &LLPT)
E-n Processors
E-@'i} Proximity
B [Security Devices
Dm Smart card readers
B -%| Sound, video and game controllers
B C— Storage controllers
78 System devices

[5 - i Universal Serial Bus controllers

Fig 29. Device manager

Right click on the LPK device and click Update driver software. Choose the option
‘Browse my computer for driver software’. Input the path of the location where the folder
‘Ipcdevice’ is present and click next. If the drivers are successfully installed, a TypeC
DFU device will appear under LpcDevice field in device manager.

See Fig 30.

I» “=¢ Imaging devices
i == Keyboards
_A--";‘, LpcDevice

b -~ Mice and other pointing devices
[>l,5_u Monitors

> ¥ Network adapters

> Y3 Ports (COM & LPT)

Fig 30. TypeC DFU device

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016 22 of 28

NXP Semiconductors AN11732

AN11732

8.2

8.3

8.4

LPC11U3x/2x USB Secondary bootloader

OS X requirements

The libusb library is not provided in this package for OS X and must be installed
manually. Out of the box, OS X is very sandboxed, and so you must install a command
line command called “brew” to enable most of the typical Linux commands. To do so,
open terminal and copy and paste the following command. Follow the on-screen
installation directions:

ruby -e "S(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

Next, install libusb using brew with the following command:
brew install libusb

With libusb installed, the dfu-util tool can now be used.

Ubuntu requirements

The libusb library is not provided in this package for Ubuntu and must be installed
manually. Open terminal and copy and paste the following commands. Follow the on-
screen installation directions:

sudo apt-get install libusb-1.0-0:i386

Note: without setting up a udev rule, administrative privileges will be needed in order for
dfu-util to access USB devices. The script will prompt the computer’s password since the
sudo command is used so the dfu-util can perform the DFU update.

DFU update script

A script file for each of the three major x86 platforms is included: Windows, OS X, and
Linux. The DFU update script is implemented slightly different for each platform but
behaves the same. The script can be double clicked to execute in order to easily perform
the FW update. The script automatically searches for any .dfu files in the working
directory and will use the dfu-util tool to communicate with the MCU and perform a DFU
update. Only one .dfu can be present in the same directory as the script and will not
execute if it finds more than one.

Fig 31 shows the expected output if the script does not find only one .dfu in the working
directory.

Found 0 .dfu files. Make sure there 1s exactly 1 .dfu t1le 1n the script directory. Exiting...

Press) vy to con

Fig 31. Expected output if the script does not find one .dfu

Fig 32 shows the expected output when it successfully finds one .dfu and performs the
DFU detach to switch the MCU context to the DFU SBL, and then sends the new
application binary.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note

Rev. 1.2 — 11 November 2016 23 of 28

https://raw.githubusercontent.com/Homebrew/install/master/install

NXP Semiconductors

AN11732

LPC11U3x/2x USB Secondary bootloader

midt, Harald w

ogram
se report bugs

wa1f1ng fo
dfu-util O

ogram .
e report bugs to “dfu-util@li

Opening DFH capable USE de
ID lf

n1ng USB DFH Runf g
mining d ¢ uIDLE,
ng ”1E DFU

rm1n1ng us: = ; dfuIDLE,
dfuIDLE,
DFU mode d
Copying dat
D Tnad

dfuIDLE status(0) = No error condition is present

Fu dei e complete. Exiting...

Waiting for 4 seconds, press a key to continue

Fig 32. Successful DFU update with the DFU script

YARRANTY

4096 bytes

8.5 Performing DFU updates manually

To manually update the FW through dfu-util, open command prompt or terminal and
navigate to the directory where the dfu-util executable is located. All the relevant dfu-util

commands are introduced in this section.

To detect if a valid DFU device is present type the command:

dfu-util_windows.exe -l

AN11732 All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016

24 of 28

NXP Semiconductors AN11732

LPC11U3x/2x USB Secondary bootloader

fu-util_window:

program
eport k

Found Runtime: [1fc9
qo

95

Fig 33. List of dfu devices

To perform a field firmware update, the secondary bootloader needs to be invoked from
with the application context. Send a detach command from dfu-util;

dfu-util_windows.exe -e

Weston S d wWelte and OpenMoko Inc.
14 Tormod efan imid
program F softh | BSOLUTELY NO WARRANTY
se report bugs to dfu-uti 15 gnumonks . org

Opening capable USE d

iming US
mining
call

Fig 34. DFU detach

After a detach command is sent, the MCU is in the SBL context. Firmware updates and
DFU commands can now be sent via dfu-util. For firmware updates, the process to
update with an encrypted binary or unencrypted binary is the same. The SBL will handle
the decryption of the encrypted binary if secure mode is enabled. Send the new
application image or DFU commands with the following command:

dfu-util_windows.exe —t 64 —D <DFU file>

The syntax shown in Fig 35 is the expected output when sending a new application
image with a valid CRC checksum.

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 1.2 — 11 November 2016 25 of 28

NXP Semiconductors AN11732

LPC11U3x/2x USB Secondary bootloader

tu-uti T _windows . exe 64 _app_crc.dfu

(dt, Harald wWelte and OpenMoko Inc.
010-2014 Tormod en and n Schmidt
is program is Free Softw h f NO WARRANTY
Please report bugs to dfu-util@lists.gnumonks.org

Ip--rrlrug DFU capable USE device...

ice DFU '-"_
DFU Fluru e...
dfuERROR,

Deter mining rice status: state dfuIDLE,
dfuIDLE,

Copying data from PC 1'::| DFU d

Dcwru'lc'ad [(4096 bytes
Download dcm-—-

st 2) = dfuIDLE, status(0) No error condition is present

Fig 35. Field firmware update

In addition to sending new FW, the key that are generated by the image creator tool in
Section 7.1.3 can be sent as DFU commands. This the easiest way to perform factory
image updates in order to update the SBL or enable secure mode in the field.

AN11732 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.
Application note Rev. 1.2 — 11 November 2016 26 of 28

NXP Semiconductors

9. Legal information

AN11732

LPC11U3x/2x USB secondary bootloader

9.1 Definitions

Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

9.2 Disclaimers

Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s
own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP

AN11732

All information provided in this document is subject to legal disclaimers.

Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fithess for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

9.3 Trademarks

Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

© NXP B.V. 2016. All rights reserved.

Application note

Rev. 1.2 — 14 November 2016

27 of 28

NXP Semiconductors AN11732

LPC11U3x/2x USB Secondary bootloader

10. Contents

Document information..........ccoceeviiinieinn e 1

1. INErOdUCTION .o 3

2. Package contents........ccccovvivieiiee i 3

3. Hardware environmentc.ccoeeeeeieeeeeeee. 4

4. Development floW.......ccccooviiviiiiie e 5

4.1 Programming flowccccoooeiviiiiieec e, 6

5. Test applicationccvevvveveniiiee e 9

51 Image header..........cccccooiiii i, 10

6. Enabling DFU on LPC11U2x/3x application
PrOJECES itiiiiiiee e e 13

6.1 Secondary Boot Loadercccccveeviveeeiinnnennn 13

6.1.1 Image header..........ccccoovvieiiiie i 14

6.2 Program FIOW.........cccceeviiiiiiiiie e 14

7. Creating factory images and DFU update
capable IMagesS......cocvevvieieiiiiee e 18

7.1 Image creator toolccceevveieiiiiee e 18

7.11 Inserting a CRC checksum in the application

IMAGE et

7.1.2 Creating a plain factory image.............

7.1.3 Generating key files for encryption

7.1.3.1 Generating an encrypted application image for

field updates........coovveiiiiiiiee e

7.1.3.2 Generating a secure factory image

8. Downloading files using DFU-UTIL

8.1 Dfu-util tool platform dependencies

8.1.1 Windows 7 requirements

8.2 OS X reqUIremMeNtS........cccovvveeeriiieenieee e
8.3 Ubuntu requirements..........cooevvveenieeeeinieeenns
8.4 DFU update SCript.......ccccvveriieieiiiiee e
8.5 Performing DFU updates manually

9. Legal informationcccocoeeeiiiiiiniieec e
9.1 DefiNitioNS ...ccocvviiiiiieee e
9.2 Disclaimers....................

9.3 Trademarks...................

10. CONEENTS ...

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section ‘Legal information'.

© NXP B.V. 2016. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 14 November 2016
Document identifier: AN11732

	1. Introduction
	2. Package contents
	3. Hardware environment
	4. Development flow
	4.1 Programming flow

	5. Test application
	5.1 Image header

	6. Enabling DFU on LPC11U2x/3x application projects
	6.1 Secondary Boot Loader
	6.1.1 Image header

	6.2 Program Flow

	7. Creating factory images and DFU update capable images
	7.1 Image creator tool
	7.1.1 Inserting a CRC checksum in the application image
	7.1.2 Creating a plain factory image
	7.1.3 Generating key files for encryption
	7.1.3.1 Generating an encrypted application image for field updates
	7.1.3.2 Generating a secure factory image

	8. Downloading files using DFU-UTIL
	8.1 Dfu-util tool platform dependencies
	8.1.1 Windows 7 requirements

	8.2 OS X requirements
	8.3 Ubuntu requirements
	8.4 DFU update script
	8.5 Performing DFU updates manually

	9. Legal information
	9.1 Definitions
	9.2 Disclaimers
	9.3 Trademarks

	10. Contents

