

 AN11607
LPC5410x CoreMark Cortex-M4 Porting Guide
Rev. 2.0 — 14 July 2015 Application note

Document information
Info Content
Keywords LPC54102, LPC54101, CoreMark, Cortex-M4 Porting Guide, Keil MDK,

IAR EWARM, LPCXpresso

Abstract This application note describes how to adapt the provided
framework projects to run CoreMark benchmark tests on the
Cortex-M4 core of the LPC5410x. Different project configuration
options for best CoreMark number and µA/MHz are discussed.

NXP Semiconductors AN11607
LPC5410x CoreMark Cortex-M4 Porting Guide

LPC5410x CoreMark Cortex-M4 Porting Guide All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 20154. All rights reserved.

Application note Rev. 2.0 — 14 July 2015 2 of 30

Contact information
For more information, please visit: http://www.nxp.com

Revision history
Rev Date Description
2 20150714 Added support for IAR EWARM and LPCXpresso.

1 20141104 Initial version.

http://www.nxp.com/

NXP Semiconductors AN11607
 LPC5410x CoreMark Cortex-M4 Porting Guide

LPC5410x CoreMark Cortex-M4 Porting Guide All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 2.0 — 14 July 2015 3 of 30

1. Introduction
The LPC54100 series of microcontrollers introduces a breakthrough in ultra-low power
performance for "always-on" sensor processing. In an “always on” application, the
LPC54100 is in a power down mode “listening” for sensor data. In this low power state,
the LPC54100 only draws 3 uA of current. Developers can optimize power efficiency and
throughput by choosing between a power-efficient 55 µA/MHz Cortex-M0+ core for
sensor data collection, aggregation, and external communications, and a Cortex-M4
processor at 100 µA/MHz to complete math-intensive algorithms, such as sensor fusion,
more quickly while saving power.
The LPC54100 was designed from the ground up for ultimate low power efficiency. The
low power flash is writable at 1.62V. Core and peripheral voltages are automatically
scaled for reduced power consumption at any frequency. An asynchronous peripheral
bus reduces peripheral clock speed without affecting CPU clock to minimize peripheral
power contribution. Low power serial interfaces can wake up the CPU from Power-Down
mode upon receiving data from synchronous serial interfaces or wakeup pins. The 12 bit,
12 channel ADC at 4.8Msps can operate at full spec including 1.62V and can perform
conversion while the CPU is asleep.
CoreMark is a simple, yet sophisticated benchmark that is designed specifically to test
the functionality of a processor core. Running CoreMark produces a single-number score
allowing users to make quick comparisons between processors.
ARM released “DAI 0350A CoreMark Benchmarking for ARM Cortex processors”
http://infocenter.arm.com/help/topic/com.arm.doc.dai0350a/DAI0350A_coremark_bench
marking.pdf. This is also a useful reference to review and get familiar with the
benchmark.
This application note shows the process of setting up the LPC5410x device and code
including memory partitioning, build options and compiler flags. It also shows how to
measure CoreMark scores with the Cortex-M4 and presents the Cortex-M4 µA/MHz
results that can be achieved. Separate CoreMark frameworks executing CoreMark code
from flash and SRAM is provided for Keil MDK, IAR EWARM, and LPCXpresso.

2. Downloading and integrating CoreMark to the framework
The zip files associated with this application note contains LPCOpen based project
frameworks that allows developers to drop in the CoreMark sources and quickly get up
and running with benchmarking the LPC5410x.
To get started first go to https://www.eembc.org/coremark/. Click the download link and
follow the instructions on that page as shown in Figure 1.

Fig 1. EEMBC download link

http://infocenter.arm.com/help/topic/com.arm.doc.dai0350a/DAI0350A_coremark_benchmarking.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dai0350a/DAI0350A_coremark_benchmarking.pdf
https://www.eembc.org/coremark/

NXP Semiconductors AN11607
 LPC5410x CoreMark Cortex-M4 Porting Guide

LPC5410x CoreMark Cortex-M4 Porting Guide All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 2.0 — 14 July 2015 4 of 30

After reviewing the license terms, look through the readme and documentation file
downloads. The readme gives some step by step instructions on unpacking and building
the distribution. This will also help with getting familiar with the CoreMark terminology
used throughout the application note.

2.1 Porting CoreMark into the CoreMark framework
There are two variants of the CoreMark framework provided with this application note;
one for each of the three toolchains that NXP supports for a total of six CoreMark
frameworks. One variant executes the entire application out of the internal flash memory
while the other modifies the linker script in order to execute the CoreMark code out of
internal SRAM. For clarity, the absolute path for each of the six projects are given below.
The flash-based CoreMark framework on Keil MDK is located here:

lpc5410x_keil_iar_cm_flash\applications\lpc5410x\keil\lpcxpresso_54102\coremark_fram
ework.uvmpw
The flash-based CoreMark framework on IAR EWARM is located here:
lpc5410x_keil_iar_cm_flash\applications\lpc5410x\iar\lpcxpresso_54102\coremark_frame
work.eww
The flash-based CoreMark framework on LPCXpresso is located inside this archive:
lpc5410x_lpcxpresso_cm_flash.zip
The SRAM-based CoreMark framework on Keil MDK is located here:
lpc5410x_keil_iar_cm_sram\applications\lpc5410x\keil\lpcxpresso_54102\coremark_fram
ework.uvmpw
The SRAM-based CoreMark framework on IAR EWARM is located here:
lpc5410x_keil_iar_cm_sram\applications\lpc5410x\iar\lpcxpresso_54102\coremark_fram
ework.eww
The SRAM-based CoreMark framework on LPCXpresso is located inside this archive:
lpc5410x_lpcxpresso_cm_sram.zip
Extract and open the project file from the IDE you wish to work with.
For Keil MDK, it is recommended to extract the archive contents as close to the
hard drive’s root folder, such as C:\nxp or a similar folder (long paths names can
otherwise be a problem for Keil MDK).
Depending on the toolchain chosen, the workspace should look like one of the following
three figures. The CoreMark framework requires the addition of the CoreMark files from
EEMBC. For Keil MDK and IAR EWARM, the coremark_m4 project must be set as active
before the CoreMark files can be added.

NXP Semiconductors AN11607
 LPC5410x CoreMark Cortex-M4 Porting Guide

LPC5410x CoreMark Cortex-M4 Porting Guide All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 2.0 — 14 July 2015 5 of 30

Fig 2. Keil MDK workspace

Fig 3. IAR EWARM workspace

NXP Semiconductors AN11607
 LPC5410x CoreMark Cortex-M4 Porting Guide

LPC5410x CoreMark Cortex-M4 Porting Guide All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 2.0 — 14 July 2015 6 of 30

Fig 4. LPCXpresso workspace

Copy the files as shown in Figure 5 from the coremark.zip download.

Fig 5. CoreMark files to copy

Place the files in the following project directory for Keil MDK and IAR EWARM:
\applications\lpc5410x\examples\coremark

For LPCXpresso:
 \coremark_m4_framework\example\Architecture_Independent
The file ee_printf.c in the \barebones directory of the EEMBC archive also needs to be
copied to the same folder for Keil and IAR. For LPCXpresso, it should be copied to the
following directory:

\coremark_m4_framework\example\Architecture_Dependent

NXP Semiconductors AN11607
 LPC5410x CoreMark Cortex-M4 Porting Guide

LPC5410x CoreMark Cortex-M4 Porting Guide All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 2.0 — 14 July 2015 7 of 30

Add these files into the project. In Keil MDK, double click on Architecture Independent
folder and browse to directory of the CoreMark files:

Fig 6. Adding files in Keil MDK

NXP Semiconductors AN11607
 LPC5410x CoreMark Cortex-M4 Porting Guide

LPC5410x CoreMark Cortex-M4 Porting Guide All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 2.0 — 14 July 2015 8 of 30

For IAR, right click the Architecture Independent folder and select Add and then “Add
Files...”:

Fig 7. Adding files in IAR EWARM

NXP Semiconductors AN11607
 LPC5410x CoreMark Cortex-M4 Porting Guide

LPC5410x CoreMark Cortex-M4 Porting Guide All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 2.0 — 14 July 2015 9 of 30

For LPCXpresso, right click inside the “Project Explorer” tab and select Refresh.
LPCXpresso should detect the newly added files and add them to the Project Explorer
automatically:

Fig 8. Refreshing LPCXpresso workspace

Add the file eeprinf.c into the ‘Architecture Dependent’ folder. Architecture dependent
files are shown below. The cvt.c file requires no change. Use the core_portme.c file
supplied in the project not the one from the coremark.zip. For convenience this file has
the required porting changes ready for use.

NXP Semiconductors AN11607
 LPC5410x CoreMark Cortex-M4 Porting Guide

LPC5410x CoreMark Cortex-M4 Porting Guide All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 2.0 — 14 July 2015 10 of 30

The workspace should look like the following in all three IDEs:

Fig 9. Keil MDK workspace after adding CoreMark files

Fig 10. IAR EWARM workspace after adding CoreMark files

NXP Semiconductors AN11607
 LPC5410x CoreMark Cortex-M4 Porting Guide

LPC5410x CoreMark Cortex-M4 Porting Guide All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 2.0 — 14 July 2015 11 of 30

Fig 11. LPCXpresso workspace after adding CoreMark files

A few edits will need to be made to integrate the CoreMark files into the framework. In
the file ‘core_main.c’ make the following modifications:
Replace:

#if MAIN_HAS_NOARGC
MAIN_RETURN_TYPE main(void) {
 int argc=0;
 char *argv[1];
#else

Fig 12. core_main.c before edits

With:

#if MAIN_HAS_NOARGC
 #if defined RENAME_MAIN
MAIN_RETURN_TYPE core_main(void) {
 #else
MAIN_RETURN_TYPE main(void) {
 #endif
 int argc=0;
 char *argv[1];
#else

Fig 13. core_main.c after edits

NXP Semiconductors AN11607
 LPC5410x CoreMark Cortex-M4 Porting Guide

LPC5410x CoreMark Cortex-M4 Porting Guide All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 2.0 — 14 July 2015 12 of 30

The file ‘eeprinf.c’ needs the LPCOpen UART call to be added to support ‘printf’ to the
terminal. To do this, add the following line of code in uart_send_char(char c), see Figure
14.

 void uart_send_char(char c) {
 Board_UARTPutChar(c);
 }

Fig 14. Adding printf support to CoreMark

Also, in eeprintf(), add an #if defined(COREMARK_SCORE_TEST). See Figure 15.

int ee_printf(const char *fmt, ...)
{
 char buf[256],*p;
 va_list args;
 int n=0;
 #if defined(COREMARK_SCORE_TEST)
 va_start(args, fmt);
 ee_vsprintf(buf, fmt, args);
 va_end(args);
 p=buf;
 while (*p) {
 uart_send_char(*p);
 n++;
 p++;
 }
 #endif
 return n;
}

Fig 15. Disabling printf support when executing µA/MHz test

This is added so that printf code will be optimized out when running the µA/MHz test. In
core_portme.h there is a #define COREMARK_SCORE_TEST that dictates whether or
not the application is executing the CoreMark score test. Commenting out this #define to
run µA/MHz test will also optimize out these unnecessary print statements.

NXP Semiconductors AN11607
 LPC5410x CoreMark Cortex-M4 Porting Guide

LPC5410x CoreMark Cortex-M4 Porting Guide All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 2.0 — 14 July 2015 13 of 30

Double check that the include path is correct for the CoreMark files.

Fig 16. Keil MDK compiler include paths

Fig 17. IAR EWARM compiler include paths

NXP Semiconductors AN11607
 LPC5410x CoreMark Cortex-M4 Porting Guide

LPC5410x CoreMark Cortex-M4 Porting Guide All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 2.0 — 14 July 2015 14 of 30

Fig 18. LPCXpresso compiler include paths

The CoreMark files have now been successfully ported into the CoreMark framework
project.

If the IDE chosen is IAR EWARM and your goal is to store the CoreMark code in SRAM
for faster execution, a line of code will need to be added to some CoreMark files. In any
other scenario, this line of code is not needed. The files that need to be modified are:

core_main.c, core_util.c, core_state.c, core_matrix.c and core_list_join.c

To execute CoreMark from SRAM with IAR EWARM, these CoreMark files will need to
be labeled as their own IAR EWARM linker “section”. The provided .icf linker file will then
place this section, which is called “critical_text”, into SRAM. To do this, add the following
line of code shown in Figure 19 above includes in all five of the files.

 /* CoreMark source files should contain this #pragma command to be put into SRAM */

 #pragma default_function_attributes = @ "critical_text"

Fig 19. IAR EWARM #pragma command

NXP Semiconductors AN11607
 LPC5410x CoreMark Cortex-M4 Porting Guide

LPC5410x CoreMark Cortex-M4 Porting Guide All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 2.0 — 14 July 2015 15 of 30

2.2 Optimizing the CoreMark framework
There are many factors that affect the CoreMark and µA/MHz score that can be
optimized. Some of these factors are IDE dependent optimizations while others leverage
the MCU architecture for better performance. The goal is to be able to produce the best
scores from all three IDEs. It is important to understand that these IDEs are constantly
changing and a different version of a given IDE may add or remove features that may
make these optimizations obsolete or ineffective. The following are the IDE versions that
are applicable to this application note:

 Keil MDK 5.13.0.0

 IAR EWARM 7.40.1.8472

 LPCXpresso 7.6.2

2.2.1 Memory considerations
Due to the inherent architecture of SRAM and flash, CoreMark will execute faster when
running out of SRAM. As shown in Figure 20, the LPC5410x internal memory uses a
multilayer AHB matrix system that provides a separate instruction and data bus for the
Cortex-M4 as well as individual buses for each of the three SRAM banks. Placing the
CoreMark code and data sections into different SRAM banks minimizes bus contention
and improves instruction and data parallelism.
It is important to minimize the flash wait states according to the MCUs frequency to
optimize the CoreMark score. In contrast, when performing the µA/MHz test, it is possible
to save power by disabling the flash’s prefetch ability. For more information on correctly
configuring the flash memory, such as the minimum amount of wait states allowed at a
given core frequency, read the LPC5410x user manual:
http://www.nxp.com/documents/user_manual/UM10850.pdf
The provided CoreMark framework projects include separate SRAM and flash based
projects that implement the various memory optimizations.

http://www.nxp.com/documents/user_manual/UM10850.pdf

NXP Semiconductors AN11607
 LPC5410x CoreMark Cortex-M4 Porting Guide

LPC5410x CoreMark Cortex-M4 Porting Guide All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 2.0 — 14 July 2015 16 of 30

Fig 20. LPC5410x AHB matrix

In both the SRAM and flash projects, there is a COREMARK_SCORE_TEST macro
defined in core_portme.h that indicates whether the project is configured to execute the
CoreMark benchmark or the µA/MHz test. If this macro is defined, the CoreMark score
test will run. If this macro is commented out, the µA/MHz test will run. Use this macro to
switch between the two benchmarks.

2.2.2 IDE Optimizations
The following optimizations are compiler based and therefore, IDE dependent. These
optimizations apply to both the SRAM and flash based projects.

NXP Semiconductors AN11607
 LPC5410x CoreMark Cortex-M4 Porting Guide

LPC5410x CoreMark Cortex-M4 Porting Guide All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 2.0 — 14 July 2015 17 of 30

2.2.2.1 Keil MDK Optimizations

There are two compiler optimizations that can be done to improve the CoreMark score.
As shown in Figure 21, in the project options and under the C/C++ tab, the optimization
level needs to be set to Level 3 (-O3) and “Optimize for Time” should be ticked.

Fig 21. Keil MDK CoreMark score optimizations

When benchmarking the power consumption of the MCU, the optimization level should
be set to Level 0 (-O0) and “Optimized for Time” should be unchecked. See Figure 22.

Fig 22. Keil MDK µA/MHz optimizations

NXP Semiconductors AN11607
 LPC5410x CoreMark Cortex-M4 Porting Guide

LPC5410x CoreMark Cortex-M4 Porting Guide All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 2.0 — 14 July 2015 18 of 30

2.2.2.2 IAR EWARM Optimizations

There are two compiler optimizations that can be done to improve CoreMark score. Set
the optimization level to “High” and select “Speed” from the drop down menu. See Figure
23.

Fig 23. IAR EWARM CoreMark score optimizations

When benchmarking the power consumption of the MCU, the optimization level should
be set to “None”. See Figure 24.

Fig 24. IAR EWARM µA/MHz optimizations

NXP Semiconductors AN11607
 LPC5410x CoreMark Cortex-M4 Porting Guide

LPC5410x CoreMark Cortex-M4 Porting Guide All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 2.0 — 14 July 2015 19 of 30

2.2.2.3 LPCXpresso Optimizations

There are two compiler optimizations that can be done to improve CoreMark score. Set
the optimization level to “Optimize most (-O3)” with the optimization flag “-ftree-switch-
shortcut”. See Fig 25

Fig 25. LPCXpresso CoreMark score optimizations

When benchmarking the power consumption of the MCU, set the optimization level to
“None (-O0)”. The optimization flag does not have a meaningful effect on the power
consumption and can be left unchanged. See Figure 26.

Fig 26. LPCXpresso µA/MHz optimizations

NXP Semiconductors AN11607
 LPC5410x CoreMark Cortex-M4 Porting Guide

LPC5410x CoreMark Cortex-M4 Porting Guide All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 2.0 — 14 July 2015 20 of 30

3. LPCXpresso LPC54102 board setup and macro defines
The LPC54102 LPCXpresso board supports a VCOM serial port connection via J6. To
observe debug messages from the board set the terminal program to the appropriate
COM port and use the setting ‘115200-8-N-1-none’. To make the debug messages
easier to read, the new line receive setting should be set to auto.

3.1.1 Board setup
The LPCXpresso LPC54102 development board is used for the benchmarking.

Fig 27. LPC54102 LPCXpresso development board

The board ships with CMSIS-DAP preprogrammed. For debugging and terminal debug
messages, connect a USB cable to J6. Board schematics are available on
LPCWare.com.

To benchmark any of the SRAM projects, be sure to follow Section 2.2.2 to pick the
correct linker script and produce the best score.

3.2 µA/MHz Measurement setup
To measure the LPC54102 power consumption, remove JS6, install connector at JP4
and insert ammeter at JP4 as shown in Figure 28.
When performing the µA/MHz benchmark from the SRAM projects, NXP recommends
using the J4 USB connector to only provide power to the necessary components on the
LPC54102 board. Additionally, after the µA/MHz benchmark has been downloaded,
power cycling the board by removing the USB cable and reinserting it is recommended to
make sure the debug block is not left on by the debugger. When trying to flash a new
program to the LPC54102, put the MCU into ISP mode. This may be necessary because

NXP Semiconductors AN11607
 LPC5410x CoreMark Cortex-M4 Porting Guide

LPC5410x CoreMark Cortex-M4 Porting Guide All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 2.0 — 14 July 2015 21 of 30

the flash is turned off by the µA/MHz benchmark, which may be problematic the next time
the IDE tries to program the flash memory.

Fig 28. Current Meter Hookup

3.2.1 SRAM Linker Script Usage
For the SRAM projects, follow the instructions in this section to correctly configure the
provided linker script and achieve the best uA/MHz score. For flash projects, this section
can be skipped. The SRAM projects utilize the IDE’s linker in two ways to optimize the
CoreMark score benchmark and µA/MHz test. For this reason, there is an extra step that
needs to be taken when switching between these two benchmarks.
The SRAM projects are configured to copy the relevant CoreMark code and data into
separate SRAM banks. In Keil MDK, this done in by a scatterload file, located here:

\applications\lpc5410x\examples\coremark_m4\ coremark_m4.sct
In IAR EWARM, it is done in an .icf file, located here:

\applications\lpc5410x\iar\lpcxpresso_54102\multicore\coremark_m4\
coremark_m4.icf

In LPCXpresso, it is done by linker scripts in a folder located here:
\coremark_m4_framework\linkscripts\

The µA/MHz test is optimized by saving as much power as possible. In this case, turn off
as many things possible, including the second SRAM bank that is utilized in the

NXP Semiconductors AN11607
 LPC5410x CoreMark Cortex-M4 Porting Guide

LPC5410x CoreMark Cortex-M4 Porting Guide All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 2.0 — 14 July 2015 22 of 30

CoreMark score benchmark. For Keil MDK, change the scatterload file to the one located
here:

\applications\lpc5410x\examples\coremark_m4\ coremark_m4_power.sct

Fig 29. Changing the scatterload file in Keil MDK

In IAR EWARM, change the .icf file to the one located here:

\applications\lpc5410x\iar\lpcxpresso_54102\multicore\coremark_m4\
coremark_m4_power.icf

Fig 30. Changing the .icf file in IAR EWARM

In LPCXpresso, change the linker script folder path to the one located here:

\coremark_m4_framework\linkscripts_power\

NXP Semiconductors AN11607
 LPC5410x CoreMark Cortex-M4 Porting Guide

LPC5410x CoreMark Cortex-M4 Porting Guide All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 2.0 — 14 July 2015 23 of 30

Fig 31. Changing linker script directory in LPCXpresso

It is important to have the appropriate scatterload file, .icf file, or linker script selected
depending on the benchmark being executed. Failure to do so will either produce an
un-optimized score or the inability to run the benchmark due to different amounts of
SRAM used in the two benchmarks.

3.3 LPCOpen Board.h defines
The default baud rate setting for the debug messages is 115200. To change the baud
rate, browse to the board.h file and update the DEBUGBAUDRATE define. If this
#defines are changed then the board, chip, and project will need to be recompiled.

Changing the core clock frequency can also be implemented by setting this #define
BOARD_MAINCLOCKRATE in board.h. If this #define is changed then the board, chip,
and project will need to be recompiled.

NXP Semiconductors AN11607
 LPC5410x CoreMark Cortex-M4 Porting Guide

LPC5410x CoreMark Cortex-M4 Porting Guide All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 2.0 — 14 July 2015 24 of 30

Fig 32. Board.h settings

4. Results
Figure 33 shows the result when running LPC5410x at 100MHz core clock from Keil
MDK. The CoreMark benchmark score is the number of iterations per second. The
CoreMark/MHz score for this run is 262.24/100MHz = 2.62 CoreMark/MHz.

Fig 33. CoreMark result from RAM @100MHz

Table 1 shows typical CoreMark score when benchmarked on Keil MDK, IAR EWARM,
and LPCXpresso when running from SRAM and flash at 100 MHz.

Table 1. LPC54102 LPCXpresso board CoreMark/MHz score
IDE CoreMark/MHz Score (SRAM) CoreMark/MHz Score (flash)
Keil MDK 2.62 2.21

IAR EWARM 3.33 2.69

LPCXpresso 2.45 2.10

For µA/MHz, the following tables show typical results that can be expected when running
on the LPC5410x LPCXpresso board. A graph is also presented, comparing the three
IDEs in terms of power consumption.

NXP Semiconductors AN11607
 LPC5410x CoreMark Cortex-M4 Porting Guide

LPC5410x CoreMark Cortex-M4 Porting Guide All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 2.0 — 14 July 2015 25 of 30

Table 2. Keil MDK µA/MHz score
Frequency Average Power

Consumption (SRAM)
µA/MHz Score
(SRAM)

Average Power
Consumption (flash)

µA/MHz Score
(flash)

12 MHz 1.51 mA 125.67 µA/MHz 1.97 mA 164.17 µA/MHz

84 MHz 7.87 mA 93.73 µA/MHz 8.80 mA 104.76 µA/MHz

96 MHz 9.20 mA 95.85 µA/MHz 10.20 mA 106.25 µA/MHz

100 MHz 98.61 mA 98.61 µA/MHz 10.71 mA 107.1 µA/MHz

Table 3. IAR EWARM µA/MHz score
Frequency Average Power

Consumption (SRAM)
µA/MHz Score
(SRAM)

Average Power
Consumption (flash)

µA/MHz Score
(flash)

12 MHz 1.542 mA 128.5 µA/MHz 2.16 mA 180 µA/MHz

84 MHz 8.18 mA 97.32 µA/MHz 9.2 mA 108.52 µA/MHz

96 MHz 9.57 mA 99.64 µA/MHz 10.56 mA 110 µA/MHz

100 MHz 10.25 mA 102.5 µA/MHz 11.22 mA 112.2 µA/MHz

Table 4. LPCXpresso µA/MHz score
Frequency Average Power

Consumption (SRAM)
µA/MHz Score
(SRAM)

Average Power
Consumption (flash)

µA/MHz Score
(flash)

12 MHz 1.47 mA 122.67 µA/MHz 2.09 mA 174.17 µA/MHz

84 MHz 7.5 mA 89.29 µA/MHz 10.4 mA 123.81 µA/MHz

96 MHz 8.76 mA 91.26 µA/MHz 11.99 mA 124.9 µA/MHz

100 MHz 9.38 mA 93.83 µA/MHz 12.71 mA 127.1 µA/MHz

NXP Semiconductors AN11607
 LPC5410x CoreMark Cortex-M4 Porting Guide

LPC5410x CoreMark Cortex-M4 Porting Guide All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 2.0 — 14 July 2015 26 of 30

Fig 34. µA/MHz IDE Comparison

5. Conclusion
In this application note, the two types of benchmarks that can be done on the LPC5410x
are presented: the CoreMark score benchmark and the µA/MHz benchmark. Details on
how to optimize these benchmarks on the LPC5410x when running the benchmark out of
SRAM and flash are discussed. These optimizations show how to achieve up to a
competitive 3.3 CoreMark/MHz score and a best in class 100 µA/MHz for this device
using the Cortex-M4 core.

E
rror!

U
nknow

n docum
e

nt
property
nam

e.

Error! U
nknow

n docum
ent property nam

e.
E

rror! U
nknow

n docum
ent property

nam
e.

NXP Semiconductors AN11607
 LPC5410x CoreMark Cortex-M4 Porting Guide

LPC5410x CoreMark Cortex-M4 Porting Guide All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 20154. All rights reserved.

Application note Rev. 2.0 — 14 July 2015 27 of 30

6. Legal information

6.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

6.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the

customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

6.3 Licenses
Purchase of NXP <xxx> components

<License statement text>

6.4 Patents
Notice is herewith given that the subject device uses one or more of the
following patents and that each of these patents may have corresponding
patents in other jurisdictions.

<Patent ID> — owned by <Company name>

6.5 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

<Name> — is a trademark of NXP Semiconductors N.V.

.

NXP Semiconductors AN11607
 LPC5410x CoreMark Cortex-M4 Porting Guide

LPC5410x CoreMark Cortex-M4 Porting Guide All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 2.0 — 14 July 2015 28 of 30

7. List of figures

Fig 1. EEMBC download link 3
Fig 2. Keil MDK workspace ... 5
Fig 3. IAR EWARM workspace 5
Fig 4. LPCXpresso workspace 6
Fig 5. CoreMark files to copy 6
Fig 6. Adding files in Keil MDK 7
Fig 7. Adding files in IAR EWARM 8
Fig 8. Refreshing LPCXpresso workspace 9
Fig 9. Keil MDK workspace after adding CoreMark

files ... 10
Fig 10. IAR EWARM workspace after adding CoreMark

files ... 10
Fig 11. LPCXpresso workspace after adding CoreMark

files ... 11
Fig 12. core_main.c before edits 11
Fig 13. core_main.c after edits 11
Fig 14. Adding printf support to CoreMark 12
Fig 15. Disabling printf support when executing µA/MHz

test .. 12
Fig 16. Keil MDK compiler include paths 13
Fig 17. IAR EWARM compiler include paths 13
Fig 18. LPCXpresso compiler include paths 14
Fig 19. IAR EWARM #pragma command 14
Fig 20. LPC5410x AHB matrix 16
Fig 21. Keil MDK CoreMark score optimizations 17
Fig 22. Keil MDK µA/MHz optimizations 17
Fig 23. IAR EWARM CoreMark score optimizations ... 18
Fig 24. IAR EWARM µA/MHz optimizations 18
Fig 25. LPCXpresso CoreMark score optimizations.... 19
Fig 26. LPCXpresso µA/MHz optimizations 19
Fig 27. LPC54102 LPCXpresso development board .. 20
Fig 28. Current Meter Hookup 21
Fig 29. Changing the scatterload file in Keil MDK 22
Fig 30. Changing the .icf file in IAR EWARM 22
Fig 31. Changing linker script directory in LPCXpresso

 .. 23
Fig 32. Board.h settings .. 24
Fig 33. CoreMark result from RAM @100MHz 24
Fig 34. µA/MHz IDE Comparison 26

NXP Semiconductors AN11607
 LPC5410x CoreMark Cortex-M4 Porting Guide

LPC5410x CoreMark Cortex-M4 Porting Guide All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2015. All rights reserved.

Application note Rev. 2.0 — 14 July 2015 29 of 30

8. List of tables

Table 1. LPC54102 LPCXpresso board CoreMark/MHz
score ... 24

Table 2. Keil MDK µA/MHz score 25
Table 3. IAR EWARM µA/MHz score 25
Table 4. LPCXpresso µA/MHz score 25

NXP Semiconductors AN11607
 LPC5410x CoreMark Cortex-M4 Porting Guide

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP Semiconductors N.V. 2015. All rights reserved.

For more information, visit: http://www.nxp.com

Date of release: 14 July 2015
Document identifier: LPC5410x CoreMark Cortex-M4 Porting Guide

9. Contents

1. Introduction ... 3
2. Downloading and integrating CoreMark to the

framework .. 3
2.1 Porting CoreMark into the CoreMark framework 4
2.2 Optimizing the CoreMark framework 15
2.2.1 Memory considerations 15
2.2.2 IDE Optimizations .. 16
2.2.2.1 Keil MDK Optimizations 17
2.2.2.2 IAR EWARM Optimizations 18
2.2.2.3 LPCXpresso Optimizations 19
3. LPCXpresso LPC54102 board setup and macro

defines .. 20
3.1.1 Board setup .. 20
3.2 µA/MHz Measurement setup 20
3.2.1 SRAM Linker Script Usage............................... 21
3.3 LPCOpen Board.h defines 23
4. Results ... 24
5. Conclusion ... 26
6. Legal information .. 27
6.1 Definitions .. 27
6.2 Disclaimers... 27
6.3 Licenses ... 27
6.4 Patents ... 27
6.5 Trademarks .. 27
7. List of figures ... 28
8. List of tables .. 29
9. Contents ... 30

	1. Introduction
	2. Downloading and integrating CoreMark to the framework
	2.1 Porting CoreMark into the CoreMark framework
	2.2 Optimizing the CoreMark framework
	2.2.1 Memory considerations
	2.2.2 IDE Optimizations
	2.2.2.1 Keil MDK Optimizations
	2.2.2.2 IAR EWARM Optimizations
	2.2.2.3 LPCXpresso Optimizations

	3. LPCXpresso LPC54102 board setup and macro defines
	3.1.1 Board setup
	3.2 µA/MHz Measurement setup
	3.2.1 SRAM Linker Script Usage

	3.3 LPCOpen Board.h defines

	4. Results
	5. Conclusion
	6. Legal information
	6.1 Definitions
	6.2 Disclaimers
	6.3 Licenses
	6.4 Patents
	6.5 Trademarks

	7. List of figures
	8. List of tables
	9. Contents

