

 AN11555
LPC15xx In-Application Programming
Rev. 1 — 3 June 2014 Application note

Document information
Info Content
Keywords LPC15xx, IAP

Abstract This application note describes the In-Application Programming
capabilities of LPC15xx.

NXP Semiconductors AN11555
 LPC15xx In-Application Programming

AN11555 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 3 June 2014 2 of 15

Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history
Rev Date Description
1 20140603 Initial version

http://www.nxp.com/
mailto:salesaddresses@nxp.com

NXP Semiconductors AN11555
 LPC15xx In-Application Programming

AN11555 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 3 June 2014 3 of 15

1. Introduction
The LPC15xx are an ARM Cortex-M3 based microcontroller family that can operate up to
72 MHz. The LPC15xx support up to 256 kB of flash memory, a 4 kB EEPROM, and
36 kB of SRAM.

The ARM Cortex-M3 uses a 3-stage pipeline and includes an internal prefetch unit that
supports speculative branching. The peripheral compliment includes one full-speed USB
2.0 device, two SPI interfaces, three USARTs, one Fast-mode Plus I2C-bus interface,
one C_CAN module, PWM/timer subsystem with four configurable, multi-purpose State
Configurable Timers(SCTimer/PWM) with input-preprocessing unit (SCT-IPU), a Real-
time clock module with independent power supply and a dedicated oscillator, two 12-
channel/12-bit, 2 Msample/s ADCs, one 12-bit, 500 ksample/s DAC, four voltage
comparators with internal voltage reference, and a temperature sensor. A DMA engine
can service most peripherals.

The In-Application Programming (IAP) allows manipulation of the on-chip flash memory
while running user application code. The IAP routines located in the BOOT ROM can be
used to operate on flash or to get certain information stored in on-chip ROM like the boot
code version, part ID and unique ID of the chip. This can include:

• Field firmware upgrade
• EEPROM content replacement
• Data storage

2. Flash specifications
The on-chip flash memory of the LPC15xx is grouped as sectors. The flash memory is
divided into 64 sectors and the size of each sector is 4 kB. Individual pages of 256 byte
each can be erased using the IAP erase page command. One sector contains 16 pages.

Fig 1. LPC15xx flash structure

NXP Semiconductors AN11555
 LPC15xx In-Application Programming

AN11555 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 3 June 2014 4 of 15

Fig 2. LPC15xx flash address mapping

3. EEPROM
The LPC15xx contains 4 kB of on-chip byte-erasable and byte-programmable EEPROM
data memory. The EEPROM can be programmed using In-Application Programming via
the on-chip boot loader software.

4. Introduction to In-Application Programming

4.1 IAP initialization
The IAP routines are located in the Boot ROM. The IAP routine resides at 0x0300 0205
location and it is thumb code. To access the IAP routines the entry point for IAP has to
be defined. For LPC15xx, the address is 0x0300 0205.
1 #define IAP_LOCATION 0x0300 0205

The IAP routines take two unsigned 32-bit integer arrays as input; the command_param
and status_result. For each IAP command the number of parameters and results vary.
The maximum number of parameters is 5, passed to the "Copy RAM to FLASH"
command. The maximum number of results is 5, returned by the "ReadUID" command.
Hence both command_param and status_result are 5 element arrays. The arrays can be
defined as:
2 unsigned int command_param[5];
3 unsigned int status_result[5];

or they can be defined as:
4 unsigned int * command_param;
5 unsigned int * status_result;
6 command_param = (unsigned int *) <address>
7 status_result = (unsigned int *) <address>

NXP Semiconductors AN11555
 LPC15xx In-Application Programming

AN11555 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 3 June 2014 5 of 15

4.2 IAP routines

Table 1. IAP routines
IAP command Code

(base 10)
Functional description Precautions

Prepare sector(s) for
write operation

50 Turns off the write protection
for the specified flash sectors.

This function must be called prior to
executing “Copy RAM to Flash” or
“Erase Sector(s)” commands.

Copy RAM to Flash 51 Performs a write operation
from RAM to flash memory.

A flash sector must be prepared for
write operation before contents can
be written.
Ensure no other flash accesses are
performed during the copy
procedure.
Source data must be located in
RAM.

Erase Sector(s) 52 Erases the contents of the
entire flash sector(s).

A flash sector must be prepared for
write operation before it can be
erased.
Ensure no other flash accesses are
performed during the erase
procedure.

Blank check
sector(s)

53 Determines if flash sector(s)
is (are) erased.

None

Read part
identification number

54 Returns the identification
number of a particular part.
See the user manual for the
specific part identification
numbers.

None

Read boot code
version number

55 Returns the boot ROM
version number.

None

Compare (memory) 56 Compares memory contents
at two locations.

None

Re-invoke ISP 57 This function call will invoke
the ISP routine located on the
boot ROM.

Calling this function will remap the
boot vectors and configures the
peripherals for ISP (UART, C_CAN
or USB).
Before calling this command, the
clocks to GPIO0/1/2 blocks should
be enabled in the
SYSAHBCLKCTRL0 register.

Read device serial
number

58 Returns the part’s unique
serial number.

None

Erase Page 59 Erases a page or multiple
pages of on-chip flash
memory.

The page has to be prepared for
write operation before it can be
erased.
Ensure no other flash accesses are
performed during the erase
procedure.

NXP Semiconductors AN11555
 LPC15xx In-Application Programming

AN11555 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 3 June 2014 6 of 15

IAP command Code
(base 10)

Functional description Precautions

EEPROM Write 61 Data is copied from the RAM
address to the EEPROM
address

The top 64 bytes of the 4kB
EEPROM are reserved and cannot
be written to.

EEPROM Read 62 Data is copied from the
EEPROM address to the
RAM address.

None

4.3 IAP precautions
The IAP manipulates the memory during run-time. Therefore, certain precautions have to
be taken to ensure proper operations.

4.3.1 Interrupts
When the IAP routines are used, any access to the flash memory must be avoided during
the erase and write operations. If the vector table interrupt is located in the flash, all the
interrupts must be disabled prior to erase and write.

The LPC15xx has the ability to remap the interrupt vector table to the RAM by changing
the MAP bits in the SYSMEMREMAP register. This allows interrupts to occur even during
the erase and write operations. But as the flash cannot be accessed during this time, the
interrupt handlers must be executed from the RAM. Hence, all the code related to the
interrupt handlers must be copied from Flash into the RAM.

4.3.2 RAM usage
The IAP routines utilize 32 bytes of space in the top portion of the on-chip RAM for
execution (address 0x2008FDF to 0x2008FFF) and up to 128 bytes of stack space. The
user program should not use this space if the IAP flash programming is permitted in the
application. Furthermore, if the interrupt vector table is remapped to the SRAM, the
bottom 512 bytes of the memory map should not be used.

5. IAP sample project and interrupt handling

5.1 Software setup
5.1.1 SRAM memory mapping

The demonstration code relocates the interrupt vector table to SRAM and uses the IAP
code. This means that the compiler must be configured such that the bottom 512 bytes
and the top 32 bytes of the memory cannot be touched.

In the Keil environment, the IRAM1 section should be specified to be smaller than the
actual SRAM size to prevent the compiler from using these areas.

The SRAM starts at address 0x0200 0000. Since the interrupt vector table uses 512
bytes of the bottom of SRAM, the start location is set to 0x0200 0200. The SRAM size of
LPC15xx is 36 kB. With the IAP using the 32 bytes in the top of SRAM, this means the
usable SRAM size is 36kB – 32 bytes i.e. 36832 bytes. But since 512 bytes is also being
used by the interrupt vector table, the SRAM size now becomes: (36864 – 32 – 512) =
36320 bytes i.e. 0x8DE0.

NXP Semiconductors AN11555
 LPC15xx In-Application Programming

AN11555 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 3 June 2014 7 of 15

Fig 3. Keil IROM and SRAM remapping

In LPCXpresso IDE, the same task is accomplished by changing the MCU settings. Right
click on ‘periph_iap’ choose Properties -> C/C++ Build -> MCU settings.

Fig 4. LPCXpresso flash and SRAM remapping

In IAR Embedded Workbench, the SRAM remapping is achieved by changing the linker
configuration settings. Right click on ‘periph_iap’ and click Options->Linker and change
the linker configuration file. The RAM address is set to 0x0200 0200 and the end address
is set to 0x0200 8DE0.

NXP Semiconductors AN11555
 LPC15xx In-Application Programming

AN11555 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 3 June 2014 8 of 15

Fig 5. IAR Embedded Workbench ROM and SRAM remapping

5.1.2 Interrupt remapping
The system remap register SYSMEMREMAP on NXP’s LPC15xx selects whether the
exception vectors are read from the boot ROM, flash or SRAM. By default, the flash
memory is mapped to the address 0X0000 0000. When the MAP bits in the
SYSMEMREMAP register are set to 0x0 or 0x1, the boot ROM or RAM are respectively
mapped to the bottom 512 bytes of the memory map (address 0x0000 0000 to 0x0000
0200).

Fig 6. SYSMEMREMAP register

So for interrupt handling during IAP, user code should copy the interrupt vector table
from 0x0000 0000 to 0x0200 0000 and then set the MAP bits to be 0x1 to select the
exception vector from RAM. The entire lower 512 byte flash block should be copied to
RAM.

5.1.3 SysTick interrupt
The SysTick is used to create a periodic interrupt while the software is running. Since
during the IAP call the flash is not accessible to the software, the SysTick interrupt
handler is relocated to the SRAM.

NXP Semiconductors AN11555
 LPC15xx In-Application Programming

AN11555 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 3 June 2014 9 of 15

Fig 7. SysTick interrupt handler settings in Keil

For the LPCXpresso IDE, the systick handler function is directed to be placed into the
SRAM by using the .data.ramfunc directive.
8 attribute__ ((__section__(".data.ramfunc")))
9 void SysTick_Handler(void){
10 LPC_GPIO->NOT[0] = (1<<7);}

In the IAR Embedded Workbench, the systick handler function is placed into the SRAM
by using the compiler directive __ramfunc.
11 __ramfunc void SysTick_Handler(void){
12 LPC_GPIO->NOT[0] = (1<<7);}

5.1.4 Handling interrupts during IAP
The LPC15xx flash is not accessible when the IAP routines are being called; interrupts
are disabled during this time. In order to allow interrupts during IAP calls the interrupt
vector table is relocated to SRAM.

The MAP bits in the SYSMEMREMAP register is set to 0x1, indicating the vector table is
located in the SRAM and not in the flash.

13 CopyInterruptToSRAM(); //remap interrupt vector to SRAM
14 LPC_SYSCON->SYSMEMREMAP = 0x1; //change memory map

The interrupt vector table is copied to the SRAM using the function
‘CopyInterruptToSRAM’. The function call is hardcoded to copy from flash address 0x00
to SRAM address 0x200 0000.

NXP Semiconductors AN11555
 LPC15xx In-Application Programming

AN11555 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 3 June 2014 10 of 15

Fig 8. Copy the IRQ handler to SRAM

In LPC15xx, during EEPROM write and read operations, the interrupts do not need to be
disabled for proper IAP operation.

5.2 Hardware setup
In the LPC15xx family of microcontrollers the CCLK parameter is not used in the IAP
APIs. However for compatibility with other LPC microcontroller families, the CCLK
parameter is passed in the application note.

The LPC1549 Xpresso board is used to implement the demonstration code. Connect a
mini-USB power cable and debugger to the board.

For the Keil IDE use the ULINK debugger (ex. UNLINK2,ULINKME, ULINKPro), for
LPCXpresso IDE use the LPC Link-2 and for IAR Embedded Workbench IDE use Jlink.

Fig 9. LPC1549 Xpresso board and LPCLink2 debugger

NXP Semiconductors AN11555
 LPC15xx In-Application Programming

AN11555 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 3 June 2014 11 of 15

The LPC1549 Xpresso board also supports CMSIS DAP which is compatible with all
three tool chains: Keil, LPCXpresso and IAR. This eliminates the use of an external
debugger.

5.3 Application example
The demonstration software is executed on the LPC1549 Xpresso Board (OM13056).

The board can be ordered from the following website:

http://www.nxp.com/demoboard/OM13056.html

The demonstration software is implemented in Keil, LPCXpresso and IAR IDE.

On opening the project, first build the chip library ‘lib_lpc_chip_15xx’. Then build the
board library ‘lib_lpc_board_nxp_lpcxpresso_1549’. Finally build the IAP project
‘periph_iap’. Once the build is successful click debug and run the project.

An LED on the board is used to indicate the status of the IAP operation. If the IAP
operation is a success, the LED on the board glows green. If the IAP operation fails, the
LED glows red.

Fig 10. Green LED on Xpresso Board

6. Conclusion
This application note provides an example implementation for In-Application
Programming (IAP) in LPC15xx MCU families. The IAP routines available on the
LPC15xx provide an easy and simple way for data storage or for program updates. As
these routines are stored on the on-chip ROM, the user application’s code space used is
minimized.

For additional details on how the IAP routines operate, refer to the LPC15xx user manual
UM10736.

http://www.nxp.com/demoboard/OM13056.html
http://www.lpcware.com/content/nxpfile/lpc15xx-user-manual

NXP Semiconductors AN11555
 LPC15xx In-Application Programming

AN11555 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 3 June 2014 12 of 15

7. Legal information

7.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

7.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s
own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

7.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

NXP Semiconductors AN11555
 LPC15xx In-Application Programming

AN11555 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 3 June 2014 13 of 15

8. List of figures

Fig 1. LPC15xx flash structure 3
Fig 2. LPC15xx flash address mapping 4
Fig 3. Keil IROM and SRAM remapping 7
Fig 4. LPCXpresso flash and SRAM remapping 7
Fig 5. IAR Embedded Workbench ROM and SRAM

remapping ... 8
Fig 6. SYSMEMREMAP register 8
Fig 7. SysTick interrupt handler settings in Keil 9
Fig 8. Copy the IRQ handler to SRAM 10
Fig 9. LPC1549 Xpresso board and LPCLink2

debugger ... 10
Fig 10. Green LED on Xpresso Board 11

NXP Semiconductors AN11555
 LPC15xx In-Application Programming

AN11555 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 3 June 2014 14 of 15

9. List of tables

Table 1. IAP routines .. 5

NXP Semiconductors AN11555
 LPC15xx In-Application Programming

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2014. All rights reserved.

For more information, visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 3 June 2014
Document identifier: AN11555

10. Contents

1. Introduction ... 3
2. Flash specifications .. 3
3. EEPROM ... 4
4. Introduction to In-Application Programming 4
4.1 IAP initialization .. 4
4.2 IAP routines .. 5
4.3 IAP precautions .. 6
4.3.1 Interrupts .. 6
4.3.2 RAM usage .. 6
5. IAP sample project and interrupt handling 6
5.1 Software setup ... 6
5.1.1 SRAM memory mapping 6
5.1.2 Interrupt remapping .. 8
5.1.3 SysTick interrupt .. 8
5.1.4 Handling interrupts during IAP 9
5.2 Hardware setup .. 10
5.3 Application example ... 11
6. Conclusion ... 11
7. Legal information .. 12
7.1 Definitions .. 12
7.2 Disclaimers ... 12
7.3 Trademarks .. 12
8. List of figures ... 13
9. List of tables .. 14
10. Contents ... 15

	1. Introduction
	2. Flash specifications
	3. EEPROM
	4. Introduction to In-Application Programming
	4.1 IAP initialization
	4.2 IAP routines
	4.3 IAP precautions
	4.3.1 Interrupts
	4.3.2 RAM usage

	5. IAP sample project and interrupt handling
	5.1 Software setup
	5.1.1 SRAM memory mapping
	5.1.2 Interrupt remapping
	5.1.3 SysTick interrupt
	5.1.4 Handling interrupts during IAP

	5.2 Hardware setup
	5.3 Application example

	6. Conclusion
	7. Legal information
	7.1 Definitions
	7.2 Disclaimers
	7.3 Trademarks

	8. List of figures
	9. List of tables
	10. Contents

