

 AN11536
Using the SCTimer/PWM for capacitive touch buttons
Rev. 1 — 14 April 2014 Application note

Document information
Info Content
Keywords LPC800, SCTimer/PWM, Analog Comparator, Capacitive Touch, Switch

Matrix

Abstract This application note describes a simple capacitive touch sensing method
using the analog comparator and State Configurable Timer
(SCTimer/PWM)

NXP Semiconductors AN11536
 Using the SCTimer/PWM for capacitive touch buttons

AN11536 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 14 April 2014 2 of 28

Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history
Rev Date Description
1 20140414 Initial version.

http://www.nxp.com/
mailto:salesaddresses@nxp.com

NXP Semiconductors AN11536
 Using the SCTimer/PWM for capacitive touch buttons

AN11536 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 14 April 2014 3 of 28

1. Introduction
Capacitive touch buttons are commonly used in embedded systems due to their low cost,
high reliability, and simplicity compared to mechanical switches. The capacitive button
can be constructed using a pad on a PCB.

This application note describes a simple capacitive touch sensing method using the
analog comparator and State Configurable Timer (SCTimer/PWM) peripherals that are
included in the LPC81xM family of 32-bit microcontrollers.

2. Theory of operation

2.1 Comparator used to implement a relaxation oscillator
A comparator can be used to construct a relaxation oscillator as shown in Fig 1.

If we assume that the positive input is set at a voltage of Vth, and initially, the voltage
across C1 is zero, the output of the comparator will be high. This causes the capacitor to
charge through resistor R1 until it reaches voltage Vth.

When the negative input voltage is greater than Vth, the output of the comparator will go
low, discharging capacitor C1 through R1. This process will occur continuously creating
an oscillator.

Fig 1. Comparator configured as a relaxation oscillator

Rather than using an actual capacitor for C1, it can also be created using a pad on a
PCB. When there is nothing touching the PCB pad, the capacitance of the PCB pad and
resistor R1 will create an oscillator with a specific frequency (see Fig 3).

When a finger is placed on the PCB pad, it will increase the capacitance of the pad,
causing the oscillation frequency to decrease (see Fig 4). By measuring the period of the
comparator output, we can determine whether a finger is touching the PCB or not.

A parasitic capacitance Cx on R1 or on the board layout will cause the small step in the
R1 C1 charge / discharge waveform (see Fig 2).

NXP Semiconductors AN11536
 Using the SCTimer/PWM for capacitive touch buttons

AN11536 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 14 April 2014 4 of 28

Changing the comparator input hysteresis between 5 mV and 20 mV will only affect the
timing by about 70 % and can be calculated into the SCTimer/PWM setup data. It is also
advised to use the 20 mV threshold to provide better noise immunity.

Note that the capacitance of the scope probe (10 pf) on C1 in Fig 2 will change the RC
timing by almost 100 %.

Fig 2. Oscilloscope trace showing R1 C1 oscillator waveform without button press (top
trace)

NXP Semiconductors AN11536
 Using the SCTimer/PWM for capacitive touch buttons

AN11536 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 14 April 2014 5 of 28

Fig 3. Oscilloscope trace showing output of oscillator without button press

Fig 4. Oscilloscope trace showing output of oscillator with button press

NXP Semiconductors AN11536
 Using the SCTimer/PWM for capacitive touch buttons

AN11536 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 14 April 2014 6 of 28

3. Capacitive touch buttons using the LPC81xM
In order to create a solution with two capacitive buttons, with a single analog comparator
input, we will utilize the following features of the LPC81xM microcontroller:
1. Analog comparator
2. SCTimer/PWM
3. Switch Matrix

The block diagram of the solution is shown in Fig 5. The only external components
required are two resistors R1, R2 and two PCB pads that function as capacitors C1 and
C2.

Note: Area inside dashed lines are internal to the LPC81xM

Fig 5. Capacitive touch block diagram

3.1 Switch matrix
The switch matrix can dynamically change how the peripherals in microcontrollers are
connected to the pins of the device package. The switch matrix is used on pins PIO0_6
for ACMP_0 and CTIN_0.

COMP_VM_SEL has a fixed pin assignment: PIO0_0 is ACMP_I1, PIO0_1 is ACMP_I2,
and is actually part of the analog comparator and selects which input is tied to the
negative input of the comparator.

The analog comparator output ACMP_O is connected to PIO0_6 through the switch
matrix to feed both buttons, C1 and C2 through R1 and R2. The switch matrix also
connects the SCT (CTIN_0) input to the same PIO0_6, so the output of the relaxation
oscillator is fed into the SCTimer/PWM. After a scanning period (completion of one flow
chart loop) has elapsed, the program then switches the comparator COMP_VM_SEL
input so that the negative input of the comparator is connected to the other comparator
input of the two buttons, C1 PIO0_0 or C2 PIO0_1.

NXP Semiconductors AN11536
 Using the SCTimer/PWM for capacitive touch buttons

AN11536 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 14 April 2014 7 of 28

3.2 Analog comparator
A block diagram of the analog comparator is shown in Fig 6. The features used are
highlighted in red. The voltage ladder output is used for the positive input of the
comparator. The voltage ladder is powered by VDD.

The negative input of the comparator is selected by the source code to be either
ACMP_I1 or ACMP_I2. Button 1 is connected to ACMP_I1 while button 2 is connected to
ACMP_I2. Note that the comparator inputs are located on fixed pins PIO0_0 and
PIO0_1.

The output of the comparator ACMP_O is connected to the pins of the microcontroller.
The switch matrix is used to select which pin the output of the comparator is connected
to. See Section 3.1 for details of the switch matrix configuration.

Fig 6. Analog comparator

NXP Semiconductors AN11536
 Using the SCTimer/PWM for capacitive touch buttons

AN11536 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 14 April 2014 8 of 28

3.3 SCTimer/PWM
The SCTimer/PWM is a peripheral that is unique to NXP Semiconductors. It can operate
like most traditional timers, but also adds a state machine to give it a higher degree of
configurability and control. This allows the SCTimer/PWM to be configured as multiple
PWMs, a PWM with dead-time control, a PWM with reset capability, as well as other
configurations that cannot be duplicated with traditional timers. Once the SCTimer/PWM
has been configured, it can run totally autonomously from the microcontroller core.

The SCTimer/PWM implemented in the LPC812M has the following features:
• Two 16-bit counters or one 32-bit counter.
• Counters clocked by bus clock or selected input.
• Up counters or up-down counters.
• State variable allows sequencing across multiple counter cycles.
• The following conditions define an event: a counter match condition, an input (or

output) condition, a combination of a match and/or an input/output condition in a
specified state, and the count direction.
− Events control outputs, interrupts, and the SCTimer/PWM states.
− Match register 0 can be used as an automatic limit.
− In bidirectional mode, events can be enabled based on the count direction.
− Match events can be held until another qualifying event occurs.

• Selected events can limit, halt, start, or stop a counter.
• Supports:

− Four inputs/four outputs
− Five match/capture registers
− Six events
− Two states

NXP Semiconductors AN11536
 Using the SCTimer/PWM for capacitive touch buttons

AN11536 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 14 April 2014 9 of 28

4. Schematics and PCB

Fig 7. Capacitive touch button schematics

Note: The PCB schematic had a small change which is reflected in the PCB layout
pictures below as a yellow colored jumper connection. The purpose was to connect R2 to
P0.6. The connection from R2 to P0.9 is also no longer required. This last minute change
is not incorporated in the layout files and Gerber files.

NXP Semiconductors AN11536
 Using the SCTimer/PWM for capacitive touch buttons

AN11536 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 14 April 2014 10 of 28

Fig 8. PCB top

Fig 9. PCB bottom

NXP Semiconductors AN11536
 Using the SCTimer/PWM for capacitive touch buttons

AN11536 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 14 April 2014 11 of 28

5. Using the SCTimer/PWM
Fig 10 shows the Red State diagram used to generate the SCTimer/PWM initialization
code. The following SCTimer/PWM resources are used:

• One SCTimer/PWM input (total of four available).
• One SCTimer/PWM output (total of four available).
• Three 16-bit match registers.
• One 16-bit capture register.
• Five events (six available).

Fig 10. Red State diagram of the capacitive touch button application

1. Initially, the low 16-bit counter is stopped (disabled) while the high 16-bit counter is

running. Since it takes some time for the interrupt service routine to switch channels
and then for the relaxation oscillator to start-up and stabilize, a “start_sample” delay
is incorporated. When the “start_sample” match occurs, it will start the low counter.

2. Now that the low timer is running, it will begin looking for a rising edge on the
“pwm_input”. Every time a rising edge occurs on the pwm_input, it will limit (or reset)
the low counter. If a second rising edge is detected before the match_pressed period
has elapsed, the timer will once again reset, and it will wait for the next rising edge.
The LOW counter will stay in the L_ENTRY state until the period of the signal
exceeds “match_pressed” so a match event occurs, and the low timer will transition
to state 1. This will only occur if the period of the pwm_input is greater than the
interval defined by “match_pressed”. If a button is pressed, the period of the
oscillator should allow it to exceed the match_pressed period. The LOW timer will
wait in “state 1” until another rising edge is detected. If a rising edge is detected, the
SCTimer/PWM will capture the count into “Oscillator_period”. It will then limit (reset)
the LOW counter, and HALT the LOW counter so no further sampling occurs. It will
be back in “L_ENTRY” but it will not be operating since it has been halted.

3. The HIGH counter will continue to count until it matches “interval_timer” which is set
to 2 ms (SystemCoreClock/500=60000 clock ticks). At this point, it will HALT the
LOW timer (if it is not already HALTed), limit the HIGH timer, and then call the
SCTimer/PWM interrupt Interval_IRQ.

NXP Semiconductors AN11536
 Using the SCTimer/PWM for capacitive touch buttons

AN11536 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 14 April 2014 12 of 28

The LOW counter is now halted (idle), while the HIGH counter once again begins
counting towards the “start_sample”.

4. The SCTimer/PWM interrupt Interval_IRQ will switch the hardware connections
between the two RC touchpads and unhalt counter_L and stop counter_L within one
write instruction. Reset state_L since it could be in either state at the time of the IRQ
and “ack” the interrupt.

Fig 11 outlines the flow of events and two states the SCT is operating on.

Fig 12 shows the LPCXpresso Red State generated SCTimer/PWM initialization function
code.

NXP Semiconductors AN11536
 Using the SCTimer/PWM for capacitive touch buttons

AN11536 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 14 April 2014 13 of 28

Fig 11. Flow Chart diagram of the capacitive touch button application

NXP Semiconductors AN11536
 Using the SCTimer/PWM for capacitive touch buttons

AN11536 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 14 April 2014 14 of 28

void sct_fsm_init (void)
{
LPC_SCT->CONFIG = (LPC_SCT->CONFIG & ~0x00060001) | 0x00000000; /* SPLIT */

/* MATCH/CAPTURE registers */
LPC_SCT->REGMODE_L = 0x0002; /* L: 1x MATCH, 1x CAPTURE, 3 unused */
LPC_SCT->REGMODE_H = 0x0000; /* H: 2x MATCH, 0x CAPTURE, 3 unused */
LPC_SCT->MATCH_H[0] = eVal_IntervalTimer; /* inIntervalTimer */
LPC_SCT->MATCHREL_H[0] = eVal_IntervalTimer;
LPC_SCT->MATCH_L[0] = eVal_MinValue; /* inMinValue */
LPC_SCT->MATCHREL_L[0] = eVal_MinValue;
LPC_SCT->MATCH_H[1] = eVal_StartSample; /* inStartSample */
LPC_SCT->MATCHREL_H[1] = eVal_StartSample;
LPC_SCT->CAPCTRL_L[1] = 0x0010;

/* OUTPUT registers */
LPC_SCT->OUT[1].SET = 0x00000010; /* outButtonPress */
LPC_SCT->OUT[1].CLR = 0x00000000;
 /* Unused outputs must not be affected by any event */
LPC_SCT->OUT[0].SET = 0;
LPC_SCT->OUT[0].CLR = 0;
LPC_SCT->OUT[2].SET = 0;
LPC_SCT->OUT[2].CLR = 0;
LPC_SCT->OUT[3].SET = 0;
LPC_SCT->OUT[3].CLR = 0;
LPC_SCT->OUTPUT = (LPC_SCT->OUTPUT & ~0x00000000) | 0x00000002;

/* Conflict resolution register */

/* EVENT registers */
LPC_SCT->EVENT[0].CTRL = 0x00001010; /* H: */
LPC_SCT->EVENT[0].STATE = 0xFFFFFFFF;
LPC_SCT->EVENT[1].CTRL = 0x00001011; /* H: */
LPC_SCT->EVENT[1].STATE = 0xFFFFFFFF;
LPC_SCT->EVENT[2].CTRL = 0x00006400; /* L: --> state L_ENTRY */
LPC_SCT->EVENT[2].STATE = 0x00000001;
LPC_SCT->EVENT[3].CTRL = 0x0000D000; /* L: --> state state_1 */
LPC_SCT->EVENT[3].STATE = 0x00000001;
LPC_SCT->EVENT[4].CTRL = 0x00006400; /* L: --> state L_ENTRY */
LPC_SCT->EVENT[4].STATE = 0x00000002;
 /* Unused events must not have any effect */
LPC_SCT->EVENT[5].STATE = 0;

/* STATE registers */
LPC_SCT->STATE_L = 0;
LPC_SCT->STATE_H = 0; /* implicit value */

/* state names assignment: */
 /* State L 0: L_ENTRY */
 /* State L 1: state_1 */

/* CORE registers */
LPC_SCT->START_L = 0x0002;
LPC_SCT->STOP_L = 0x0000;
LPC_SCT->HALT_L = 0x0011;
LPC_SCT->LIMIT_L = 0x0014;
LPC_SCT->START_H = 0x0000;
LPC_SCT->STOP_H = 0x0000;
LPC_SCT->HALT_H = 0x0000;
LPC_SCT->LIMIT_H = 0x0001;
LPC_SCT->EVEN = 0x00000001;
}

Fig 12. SCT Initialization Code function produced by Red State

NXP Semiconductors AN11536
 Using the SCTimer/PWM for capacitive touch buttons

AN11536 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 14 April 2014 15 of 28

Fig 13 shows how the main function calls the sct initialization function (sct_fsm_init).
After the initialization, both the low and high counters are halted, so the code changes
the status of the low counter to stopped, but not halted, while the high counter is unhalted
and begins counting.

The SCTimer/PWM interrupt is enabled by NVIC_Enable(SCT_IRQn).

/* Enable AHB clock to the SCT. */
 LPC_SYSCTL->SYSAHBCLKCTRL |= (0x1 << 8) ;
 sct_fsm_init() ;

 LPC_SCT->EVFLAG = 0x3F ; /* clear all SCT interrupt flags */
 NVIC_EnableIRQ(SCT_IRQn) ; /* Enable SCT interrupt */

 uint32_t tmp ;
 tmp = LPC_SCT->CTRL_U ;
 tmp &= ~((1 << 2+16) | /* un-halt counter_H */
 (1 << 2)) ; /* un-halt counter_L */
 tmp |= (1 << 1) ; /* stop counter_L */
 LPC_SCT->CTRL_U = tmp ; /* The STOP and HALT bit need to be */
 /* updated in a single command */

Fig 13. Starting the SCT timer

6. SCTimer/PWM interrupt

6.1 Interrupt processing
Button presses are detected when the period of the relaxation oscillator exceeds a
specified value. The actual button press determination is made in the SCTimer/PWM
interrupt. Every 2 ms the interrupt will occur and it will determine if a button was pressed,
and what action should be taken. In the example code included with this application note,
an LED is used to indicate when a button is pressed (level-sensitive), while the other
LED toggles on the rising edge of a button press (edge-sensitive).

The interrupt service routine also sets up the comparator inputs to scan the next button.
An oscilloscope trace displaying the scan change between the two buttons is shown in
Fig 14.

NXP Semiconductors AN11536
 Using the SCTimer/PWM for capacitive touch buttons

AN11536 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 14 April 2014 16 of 28

Fig 14. Switching between the two buttons

6.2 Interrupt CPU bandwidth usage
The processor spends about 12 usec for each 2 msec time period in the IRQ which
relates to a bandwidth usage of 0.6 % CPU time.

NXP Semiconductors AN11536
 Using the SCTimer/PWM for capacitive touch buttons

AN11536 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 14 April 2014 17 of 28

Fig 15. 0.6 % of CPU bandwidth spent in IRQ

7. LPCXpresso Red State tool explained
The LPCXpresso IDE provides a tool called Red State, a graphical state machine editor.

More details are available in the Code Red, Getting Started with Red State user manual.
Since the State Machine design tool’s GUI provides a very high level point of view, it
does not directly correlate to the SCTimer/PWM control registers and the terms used by
the SCTimer/PWM. This part of the document should assist to make the connections
from the Red State design interface to SCTimer/PWM registers.

7.1 State diagram
The state diagram describes the global interactions of the individual states and events
controlling the SCTimer/PWM.

NXP Semiconductors AN11536
 Using the SCTimer/PWM for capacitive touch buttons

AN11536 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 14 April 2014 18 of 28

Fig 16. State diagram

7.1.1 States
The tool provides two kinds of states: regular states and pseudo states. Regular states
are individual states mapped to the LPC_SCT->State_L, _H, _U registers, while the
pseudo states are the accumulation of actions (SCTimer/PWM events) with their inputs
and outputs which are assigned, and happen in, every (all) states.

Graphically adjacent to the states are the SCTimer/PWM events running in the particular
state.

An SCTimer/PWM event can be assigned to multiple states.

H_ALWAYS: Pseudo state of Counter_H.

L_ENTRY: Entry, start state of Counter_L. State_L 0, the default start state upon reset.

State 1 : State 1 of Counter_L.

7.1.2 Actions (SCTimer/PWM events)
Actions (SCTimer/PWM events) are definitions of input stimuli, counter matches, output
and/or state change actions.

A ‘+’ or ‘–‘ sign indicates the input signal edge specified on an input pin trigger selection.
• The action ‘actEnableLowTimer’ is caused by state machine input, a Match_H

register counter match and a state machine output will start Counter_L. Since this is
connected with the pseudo state ALWAYS_H it will run in all Counter_L states.

• The action ‘actMatchPressed’ is caused by state machine Input, pressing a pad while
in State_L 0 (L_ENTRY), lowering the oscillation frequency and therefore exceeding
the timer (Counter_L) match value inMinValue (match event) before a rising edge
(relaxation oscillator) on inPwmInput occurs which would Limit_L (reset) the counter.
This action causes State_L 1 to be loaded.

• The action ‘actMeasurePeriod’ is caused by state machine input, a rising edge
(relaxation oscillator) on inPwmInput while in State_L 1.
This action causes the following Red State outputs: Capture Counter_L value, Limit
Counter_L, Halt Counter_L, set Button_Pressed output and Load State_L 0
(L_ENTRY).

NXP Semiconductors AN11536
 Using the SCTimer/PWM for capacitive touch buttons

AN11536 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 14 April 2014 19 of 28

7.2 State table
The state table shows the actions and SCTimer/PWM events used by this state machine.

As mentioned earlier, H_ALWAYS are the Pseudo States running in all Counter_H
States.

Action (SCTimer/PWM Event) actResetCounter is triggered by signal sigPulseStart
(+edge on inPwmInput) and reloads the State_L (HEvent bit = 0) with the same value
and does not cause a state change.

Action (SCTimer/PWM Event) actMatchPressed is triggered by signal sigButtonPress
(match or exceed inMinValue) and loads the State_L (HEvent bit = 1) with State_L 1 …
and so forth.

The signals column defines the signals causing the actions (SCTimer/PWM Events).

The Red State tool assigns the state table order arbitrarily during the editing process.
The priority column will be necessary to assign a priority to states with the same trigger
signal while in the same state to pick the highest as the one determining the state
change being acted upon.

Fig 17. State table

7.3 State machine inputs
The state machine inputs table lists all available inputs, standard input signals and user
defined soft inputs.

A “const int” can be seen as an enum constant used by match set values and similar. It
also allows for expression evaluation like “(SystemCoreClock / 5000) * 10”.

NXP Semiconductors AN11536
 Using the SCTimer/PWM for capacitive touch buttons

AN11536 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 14 April 2014 20 of 28

Fig 18. State machine inputs

Also indicated is the affected part of the code generated.

7.4 State machine outputs
The state machine outputs table lists all available outputs, standard output signals and
user definable register access.

This list also provides init values for the SCTimer/PWM output registers by use of the
preload column.

NXP Semiconductors AN11536
 Using the SCTimer/PWM for capacitive touch buttons

AN11536 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 14 April 2014 21 of 28

Fig 19. State machine outputs

Also indicated is the affected part of the code generated along with reference points and
lines to its relevant data, bit positions and array indices.

7.5 State machine action list
The state machine action list defines the output operations performed by each action
(SCTimer/PWM Event).

An action (SCTimer/PWM Event) item with operation “none” assigned might still have a
hidden operation assigned, like a state load or add operation which are only indicated in
the state diagram and the state table.

NXP Semiconductors AN11536
 Using the SCTimer/PWM for capacitive touch buttons

AN11536 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 14 April 2014 22 of 28

Fig 20. State machine action list

Also indicated is the affected part of the code generated along with reference points and
lines to its relevant data, bit positions and array indices.

Action (SCTimer/PWM event) actMatchPressed does not show an associated output
operation, but has the state change from State_L 0 to State_L 1 shown in the state
diagram and state table.

7.6 State machine signals
The state machine signals define the event trigger signals.

The included code snippets and lines to the event register bits help associating individual
event register bits to all related other register data entries and register array indices.

NXP Semiconductors AN11536
 Using the SCTimer/PWM for capacitive touch buttons

AN11536 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 14 April 2014 23 of 28

Fig 21. State machine signals

Signal sigIntervalTimer and sigStartSample provide the event trigger definitions for event
0 and event 1 being a Match_H 0 and Match_H 1 condition.

These two Counter_H related events run on all states and provide the following
operations for event 0, Limit_H, Halt_L, fire IRQ and for event 1 the following operation,
Start_L.

The state is not getting changed since 0 is being added to the current state.

NXP Semiconductors AN11536
 Using the SCTimer/PWM for capacitive touch buttons

AN11536 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 14 April 2014 24 of 28

Signal sigPulseStart provides the event trigger of a rising edge for event 2 and event 4.
Event 2 has the following operation associated, Limit_L while event 4 associates
operation Limit_L and Halt_L and changes from state 1 to 0.

Signal sigButtonPress triggers event 3 upon a Match_L 0 condition. The operations
assigned to it are “none”, other than a state change from 0 to 1.

8. SCTimer/PWM const symbols and macros
Besides using the Red State tool, another approach for generating the SCTimer/PWM
register initialization content would be to use a large set of enum and #define register
and register-bit definitions along with some macros to provide an easier to oversee
SCTimer/PWM content of registers along with its application flow.

Three files have been included with this app-note to illustrate the use of predefined
constants.
1. sct_defs.h provides generic SCTimer/PWM register and register-bit definitions.
2. sct_ctouch.h contains capacitive touch app specific SCTimer/PWM constant

definitions and macros.
3. sct ctouch.c holds the SCTimer/PWM initialization code utilizing the above mentioned

include files and their symbolic definitions.

9. SCTimer/PWM register content
A spreadsheet example can be used to illustrate where the SCTimer/PWM data is being
placed.

It serves also as a nice configuration tool by filling in the desired options and at the end
calculating the resulting register content.

Since the whole LPC8xx SCTimer/PWM spreadsheet size exceeds a regular page size,
only a small portion is included as a sample.

The spreadsheet-file should be part of this appnote documentation.

 N
XP Sem

iconductors
U

sing the SC
Tim

er/PW
M

 for capacitive touch buttons

A
N

11536

A
pplication note

AN
11536

R
ev. 1 —

 14 A
pril 2014

All inform
ation provided in this docum

ent is subject to legal disclaim
ers.

25 of 28
 ©

 N
X

P B.V. 2014. A
ll rights reserved.

Fig 22. SCTimer/PWM register content

NXP Semiconductors AN11536
 Using the SCTimer/PWM for capacitive touch buttons

AN11536 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 14 April 2014 26 of 28

10. Legal information

10.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

10.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s
own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP

Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

10.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

NXP Semiconductors AN11536
 Using the SCTimer/PWM for capacitive touch buttons

AN11536 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 14 April 2014 27 of 28

11. List of figures

Fig 1. Comparator configured as a relaxation oscillator
 .. 3

Fig 2. Oscilloscope trace showing R1 C1 oscillator
waveform without button press (top trace) 4

Fig 3. Oscilloscope trace showing output of oscillator
without button press .. 5

Fig 4. Oscilloscope trace showing output of oscillator
with button press ... 5

Fig 5. Capacitive touch block diagram 6
Fig 6. Analog comparator .. 7
Fig 7. Capacitive touch button schematics 9
Fig 8. PCB top... 10
Fig 9. PCB bottom ... 10
Fig 10. Red State diagram of the capacitive touch

button application .. 11
Fig 11. Flow Chart diagram of the capacitive touch

button application .. 13
Fig 12. SCT Initialization Code function produced by

Red State .. 14
Fig 13. Starting the SCT timer 15
Fig 14. Switching between the two buttons 16
Fig 15. 0.6 % of CPU bandwidth spent in IRQ 17
Fig 16. State diagram .. 18
Fig 17. State table ... 19
Fig 18. State machine inputs 20
Fig 19. State machine outputs 21
Fig 20. State machine action list 22
Fig 21. State machine signals 23
Fig 22. SCTimer/PWM register content 25

NXP Semiconductors AN11536
 Using the SCTimer/PWM for capacitive touch buttons

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2014. All rights reserved.

For more information, visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 14 April 2014
Document identifier: AN11536

12. Contents

1. Introduction ... 3
2. Theory of operation ... 3
2.1 Comparator used to implement a relaxation

oscillator ... 3
3. Capacitive touch buttons using the LPC81xM .. 6
3.1 Switch matrix .. 6
3.2 Analog comparator ... 7
3.3 SCTimer/PWM ... 8
4. Schematics and PCB .. 9
5. Using the SCTimer/PWM................................... 11
6. SCTimer/PWM interrupt 15
6.1 Interrupt processing ... 15
6.2 Interrupt CPU bandwidth usage 16
7. LPCXpresso Red State tool explained 17
7.1 State diagram ... 17
7.1.1 States ... 18
7.1.2 Actions (SCTimer/PWM events) 18
7.2 State table .. 19
7.3 State machine inputs .. 19
7.4 State machine outputs 20
7.5 State machine action list 21
7.6 State machine signals 22
8. SCTimer/PWM const symbols and macros 24
9. SCTimer/PWM register content 24
10. Legal information .. 26
10.1 Definitions .. 26
10.2 Disclaimers ... 26
10.3 Trademarks .. 26
11. List of figures ... 27
12. Contents ... 28

	1. Introduction
	2. Theory of operation
	2.1 Comparator used to implement a relaxation oscillator

	3. Capacitive touch buttons using the LPC81xM
	3.1 Switch matrix
	3.2 Analog comparator
	3.3 SCTimer/PWM

	4. Schematics and PCB
	5. Using the SCTimer/PWM
	6. SCTimer/PWM interrupt
	6.1 Interrupt processing
	6.2 Interrupt CPU bandwidth usage

	7. LPCXpresso Red State tool explained
	7.1 State diagram
	7.1.1 States
	7.1.2 Actions (SCTimer/PWM events)

	7.2 State table
	7.3 State machine inputs
	7.4 State machine outputs
	7.5 State machine action list
	7.6 State machine signals

	8. SCTimer/PWM const symbols and macros
	9. SCTimer/PWM register content
	10. Legal information
	10.1 Definitions
	10.2 Disclaimers
	10.3 Trademarks

	11. List of figures
	12. Contents

