

 AN11153
DMX512/RDM slave using LPC111x
Rev. 1 — 1 February 2012 Application note

Document information
Info Content
Keywords LPC1110FD20; LPC1111FDH20; LPC1111FHN33; LPC1112FD20;

LPC1112FDH20; LPC1112FDH28; LPC1112FHN33; LPC1112FHI33;
LPC1113FHN33; LPC1113FBD48; LPC1114FDH28; LPC1114FN28;
LPC1114FHN33; LPC1114FHI33; LPC1114FBD48; LPC1115FBD48;
LPC111x, ARM, Cortex M0, DMX, DMX512, RDM, Architectural Lighting,
Entertainment Lighting

Abstract This application note describes the use of the NXP LPC111x Cortex M0
microcontroller to create an RDM enabled DMX512 Slave.

NXP Semiconductors AN11153
 DMX512/RDM slave using LPC111x

AN11153 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 1 February 2012 2 of 31

Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history
Rev Date Description
1 20120201 Initial version.

http://www.nxp.com/�
mailto:salesaddresses@nxp.com�

NXP Semiconductors AN11153
 DMX512/RDM slave using LPC111x

AN11153 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 1 February 2012 3 of 31

1. Document purpose
The purpose of this document is to explain the NXP DMX512/RDM slave demoboard
design. Both hardware and software are described in detail.

This document is intended for technical persons, such as system architects and
hardware/software engineers, interested in designing/developing a DMX512 slave using
an NXP microcontroller.

2. Introduction
The DMX512 slave or DMX512 receiver is an example implementation for an RDM
enabled DMX512 device built around the NXP LPC111x Cortex M0 microcontroller. The
DMX512 slave features four DMX controllable LEDs, a red heartbeat LED, a green traffic
LED, DIP switches for selecting the DMX start address, a 5-position joystick, and an
optional LCD. The UART and the 16-bit timer/counters of the LPC111x MCU are the
main hardware blocks needed to implement the DMX512 slave. The I2C hardware block
is used to interface with the (optional) LCD functionality.

References in this document to DMX512 refer to DMX512-A, since both hardware and
software are designed using the latest standard[1].

The software can be built with
• LPCXpresso v4.1.0_190, and
• IAR Embedded Workbench for ARM v6.20.4.

Fig 1. DMX512 slave

NXP Semiconductors AN11153
 DMX512/RDM slave using LPC111x

AN11153 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 1 February 2012 4 of 31

3. DMX512 slave hardware

3.1 Physical layer
The schematic of the physical DMX layer is depicted in Fig 2.

Fig 2. DMX512 physical layer

NXP Semiconductors AN11153
 DMX512/RDM slave using LPC111x

AN11153 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 1 February 2012 5 of 31

The DMX bus connects to DATA+ and DATA- of DMX-IN and DMX-OUT. DMX-IN is a 5-
pole male XLR receptacle. DMX-OUT is a 5-pole female XLR receptacle. A 3-pin spare
connector (not mounted) is available for other form factors. IC3 is an RS-485/RS422
transceiver, providing 15 kV ESD protection.

The physical layer is electrically isolated from the DMX bus. The RX, TX and DIR signals
from the microcontroller are optically isolated with high-speed optocouplers, and the
supply for the optocouplers and bus transceiver are provided via the isolated DC/DC
convertor (DC1). During startup the IO pins of the micro are high, and FET Q2 is used
as an inverter to switch the DIR of IC3 to receive mode to avoid unwanted driving of the
DMX bus.

3.2 Microcontroller
The schematic of the microcontroller is depicted in Fig 3.

Fig 3. Microcontroller on DMX512 slave

The system is built around NXP’s new LPC1114 device, which is a Cortex-M0 running at
frequencies of up to 50 MHz. Included are 32 kB on-chip flash, 8 kB SRAM, SSP, I2C,
UART, ADC, etc.

Debugging and flashing connection is provided by means of header SWD, which
complies with the 10-pin SWD standard as supported by many flash and software tools.

NXP Semiconductors AN11153
 DMX512/RDM slave using LPC111x

AN11153 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 1 February 2012 6 of 31

The RESET button can be used to reset the microcontroller.

A 4-channel DIP switch is added to support diversity.

Two LEDs are provided, one red and one green.

3.3 User interface
The schematic of the user interface is depicted in Fig 4.

Fig 4. User interface on DMX512 slave

The I2C alpha-numeric, 2x16 character LCD display is used to give feedback to the user.
User commands can be entered with 5-way navigation switch S2.

3.4 LED interface and local LED feedback
The DMX512 slave board delivers four PWM signals to an external light source (e.g.,
LED) on the LEDS_OUT plug.

Fig 5. RGBW LED PWM output

NXP Semiconductors AN11153
 DMX512/RDM slave using LPC111x

AN11153 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 1 February 2012 7 of 31

The red, green, blue and white PWM signals are also connected to four corresponding
on-board LEDs. The LEDs are placed in a circle, close to each other. When a diffuser is
attached (not provided), the colors can be combined to form a single color. If the local
feedback is not desired, it can be disabled with jumper LEDS_ENABLE.

3.5 Extension interface
The DMX512 slave board also has an extension plug with system power, ground, I2C bus
and RESET signal.

Fig 6. I2C extension plug

3.6 System power
The schematic of the power supply is depicted in Fig 7.

Fig 7. Power circuit of DMX512 slave

NXP Semiconductors AN11153
 DMX512/RDM slave using LPC111x

AN11153 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 1 February 2012 8 of 31

A standard USB-mini-B plug is used to connect the 5 V system power. The ON LED
illuminates when USB power is provided.

Note: IC2 (SA57000-33D) is pin-compatible with the LP3985IM5-3.3 device.

3.7 Board layout
The layout of the board (5.95” x 3.75”) is shown in Fig 8.

Fig 8. Board layout of DMX512 slave

On the left are the DMX-OUT and DMX-IN receptacles. On the top-left is the (not
mounted) DMX extension plug. The left part of the board is electrically isolated from the
right part on the division line through the middle of the optocouplers and the DC/DC
convertor.

The LCD display is at the top; below left are the two LEDs and below right is the
navigation switch.

In the circle are the four PWM-controlled LEDs, and to the right are the DIP switches and
the microcontroller. At the bottom right are the RESET switch and the SWD interface.

At the bottom are the USB power plug, the PWM LEDs outputs and the extension plug.

NXP Semiconductors AN11153
 DMX512/RDM slave using LPC111x

AN11153 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 1 February 2012 9 of 31

Table 1. DMX512 slave parts list
Part Value Device Package Farnell Description
RESET B3S1000 B3S1000 B3XS 177807 6.2 mm x 6.5 mm TACT

Switch (SMD)

Q2 BSH105 BSH105 SOT23 1758066 N-channel enhancement
mode MOS transistor

D11 BTHQ21605V-COG-
FSRE-I2C

BTHQ21605V-
COG-FSRE-I2C

LCD_I2C 1220409 Batron I2C LCD Module,
alphanumeric, 2X16

C10 100n C0805 P0805 Capacitor

C13 100n C0805 P0805 Capacitor

C14 100n C0805 P0805 Capacitor

C15 100n C0805 P0805 Capacitor

C19 100n C0805 P0805 Capacitor

C20 100n C0805 P0805 Capacitor

C21 100n C0805 P0805 Capacitor

C24 100n C0805 P0805 Capacitor

C25 100n C0805 P0805 Capacitor

C5 100n C0805 P0805 Capacitor

C9 100n C0805 P0805 Capacitor

C17 180n C0805 P0805 Capacitor

C16 1u C0805 P0805 Capacitor

C18 1u C0805 P0805 Capacitor

C22 220n C0805 P0805 Capacitor

C23 220n C0805 P0805 Capacitor

C7 220n C0805 P0805 Capacitor

C3 22p C0805 P0805 Capacitor

C4 22p C0805 P0805 Capacitor

C6 2u2 C0805 P0805 Capacitor

C8 2u2 C0805 P0805 Capacitor

C1 4u7 C0805 P0805 Capacitor

C11 4u7 C0805 P0805 Capacitor

C12 4u7 C0805 P0805 Capacitor

C2 4u7 C0805 P0805 Capacitor

Q1 AKER-C3E-12MHz CRYSTAL4 XTAL4 1640974 Crystal, 2.5 mm x 3 mm

DIR FOD060L FOD060L SOIC08 1228309 Fairchild Opto Coupler,
3V3, high-speed,
10 Mbit/s

RX FOD060L FOD060L SOIC08 1228309 Fairchild Opto Coupler,
3V3, high-speed,
10 Mbit/s

TX FOD060L FOD060L SOIC08 1228309 Fairchild Opto Coupler,
3V3, high-speed,
10 Mbit/s

SWD FTSH-105-DV FTSH-105-DV 127_2R10_SMT 1767036 Samtec connector, 10-
way

NXP Semiconductors AN11153
 DMX512/RDM slave using LPC111x

AN11153 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 1 February 2012 10 of 31

Part Value Device Package Farnell Description
LEDS_ENABLE JP1E JP1E JP1 JUMPER

L1 BLM18AG601S L0603 P0603 Inductor

L2 BLM18AG601S L0603 P0603 Inductor

L3 BLM18AG601S L0603 P0603 Inductor

IC1 LPC1114FBD48/301 LPC1113/14-
LQFP48

LQFP48 1786289 NXP Semiconductors,
Cortex-M0 MCU, 32-bit

L4 10uH L-USL1812 L1812 1174073 INDUCTOR, American
symbol

S1 MCDHN-4F-T-V MCDHN-4F-T-V DIP4 1605479 DIP Switch SMD, 4-way

DMX-OUT NC5FAH NC5FAH NC5FAH 8020418 Neutrik Audio Connector
XLR SERIES

DMX-IN NC5MAH NC5MAH NC5MAH 8020396 Neutrik Audio Connector
XLR SERIES

DC1 NKE0303SC NME NME 1175765 DC-DC CONVERTER

W OVS-0801 (W) OVS-0801(W) CHIPLED_0805 1716764 Chip LED 0805

B OVS-0803 (B) OVS-0803(B) CHIPLED_0805 1716765 Chip LED 0805

ON OVS-0803 (B) OVS-0803(B) CHIPLED_0805 1716765 Chip LED 0805

G OVS-0804 (G) OVS-0804(G) CHIPLED_0805 1716766 Chip LED 0805

LED2 OVS-0804 (G) OVS-0804(G) CHIPLED_0805 1716766 Chip LED 0805

LED1 OVS-0808 (R) OVS-0808(R) CHIPLED_0805 1716768 Chip LED 0805

R OVS-0808 (R) OVS-0808(R) CHIPLED_0805 1716768 Chip LED 0805

EXT nc PINHD-1X5 1X05 PIN HEADER

LEDS_OUT nc PINHD-1X6 1X06 PIN HEADER

R22 100E R0805 P0805 Resistor

R15 10k R0805 P0805 Resistor

R16 10k R0805 P0805 Resistor

R17 10k R0805 P0805 Resistor

R18 10k R0805 P0805 Resistor

R20 10k R0805 P0805 Resistor

R21 10k R0805 P0805 Resistor

R5 10k R0805 P0805 Resistor

R6 10k R0805 P0805 Resistor

R8 150E R0805 P0805 Resistor

R1 1k R0805 P0805 Resistor

R2 1k R0805 P0805 Resistor

R35 1k5 R0805 P0805 Resistor

R10 390E R0805 P0805 Resistor

R14 390E R0805 P0805 Resistor

R7 390E R0805 P0805 Resistor

R9 390E R0805 P0805 Resistor

R11 3k3 R0805 P0805 Resistor

R12 3k3 R0805 P0805 Resistor

NXP Semiconductors AN11153
 DMX512/RDM slave using LPC111x

AN11153 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 1 February 2012 11 of 31

Part Value Device Package Farnell Description
R13 3k3 R0805 P0805 Resistor

R23 3k3 R0805 P0805 Resistor

R19 47k R0805 P0805 Resistor

R3 560E R0805 P0805 Resistor

R4 560E R0805 P0805 Resistor

IC2 SA57000-33D SA57000-33D SOT23-5 1826832 CapFREE 150 mA, low-
noise, low-drop regulator

S2 SKQUDBE010 SKQUDBE010 JOYSTICK 1435776 Joystick, 4-directions with
center push, SKQU

IC3 SP3075EEN-L SP3075EEN-L SO08 9386688 RS-485/RS422
transceivers

TP1 TPSPAD1-13 TPSPAD1-13 P1-13 TEST PIN

TP2 TPSPAD1-13 TPSPAD1-13 P1-13 TEST PIN

X5 USB-MB-SMD USB-MB-SMD USB-MB-SMD 1654060 MINI USB-B connector

DMX nc W237-103 W237-103 WAGO SCREW CLAMP

NXP Semiconductors AN11153
 DMX512/RDM slave using LPC111x

AN11153 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 1 February 2012 12 of 31

4. DMX512 slave software
This section first describes the software architecture and the main software execution
flow. The second part of this section explains the software structure in more detail.

4.1 Architecture
The software of the DMX512 slave has a modular architecture, meaning that each
hardware block has its own software driver. To keep the memory footprint of the firmware
as small as possible, the software running on the DMX512 slave does not incorporate a
Real Time Operating System. The software is written in the “C” programming language.
Functionality can be easily enabled or disabled before building the software, such as
support of the local LCD and support of RDM (see Section 4.9), in order to get a smaller
flash memory footprint. When RDM support is enabled, bidirectional communication will
be used between the DMX512 master and the DMX512 slave. Fig 9 shows the
architectural block diagram.

Fig 9. Software architecture of DMX512 slave

4.2 Main software execution flow
Fig 10 shows the flowchart of the DMX512 slave software. The DMX slave init is
described in Section 4.4. The following described actions are repeated until the DMX512
slave is powered down or reset.

The main loop starts with reading a DMX512 packet from the DMX transmission line.
This is done by calling the function Uart_RecvDmxSlotValues(). This read action times
out after one second, being the maximum time between two successive DMX512
packets, when no data is received. This timeout could be caused by the DMX512 master
being powered down or disconnected from the DMX transmission line, the DMX512 slave
being disconnected from the DMX transmission line, the transmission line being broken,
or a hardware conflict on the DMX transmission line.

NXP Semiconductors AN11153
 DMX512/RDM slave using LPC111x

AN11153 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 1 February 2012 13 of 31

When a timeout occurs the four DMX controlled LEDs are turned OFF, and the text “No
packets from DMX512 master” is shown on the LCD. This text is removed from the LCD
as soon as a DMX512 NULL START packet is received.

When the read action is successful the GREEN traffic LED is toggled. The traffic LED is
an indication of how many DMX512 packets are received per second: slow blinking
means low traffic; fast blinking means high traffic; no blinking means no traffic or the
receiving circuit of DMX512 slave is broken. Then the DMX512 start code (also called
slot 0, or the first byte of the packet) is checked to be a NULL START code (hexadecimal
0x00), the Alternate START code 23 (hexadecimal 0x17) indicating an ASCII Text
packet, or the START code 204 (hexadecimal 0xCC) indicating a RDM packet. The
received slot data from the NULL START code packet is used to drive the four DMX
controllable LEDs (dimmable from 0 % to 100 %).

When no new data is received for one or more of the DMX controlled LEDs, because the
DMX transmission didn’t include these slots, these LEDs are turned OFF. When none of
the four DMX controllable LEDs is addressed with a NULL START code packet, the text
“Not addressed by DMX512 master” is shown on the LCD. If the example software is
built without RDM support, the position of the DIP switches is read again, to determine
which DMX slots (channels) the DMX512 slave will listen to; the DMX512 slave does not
need a power down/up or reset to let it listen to other DMX slots.

When an ASCII text packet is received, the first 32 characters of this message are
displayed on the LCD. When an RDM packet is received, it will only be handled when it is
addressed to this DMX512 slave, or when it is a broadcast message (see Section 4.3 for
more details).

The last action in the main loop is triggering the WatchDog Timer (WDT). If the WDT isn’t
triggered for six seconds (this should never happen because of the one second read
timeout), the DMX512 slave will be reset, resulting in the start message being shown on
the LCD.

NXP Semiconductors AN11153
 DMX512/RDM slave using LPC111x

AN11153 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 1 February 2012 14 of 31

Fig 10. Flowchart of DMX512 slave software

NXP Semiconductors AN11153
 DMX512/RDM slave using LPC111x

AN11153 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 1 February 2012 15 of 31

4.3 RDM
The Remote Device Management (RDM) protocol[3] permits intelligent bidirectional
communication between a DMX512 master and a DMX512 slave. RDM enables DMX
device discovery (when connected to the DMX transmission line) plus management and
control of the DMX device. Examples of RDM messages (control packets) are: change
(set) DMX start address, get DMX device state info (e.g., lamp burning hours, power
cycles, etc), RDM device self test, etc. This DMX512 slave illustrates the mandatory
RDM messages. Extension of the supported RDM messages is very easy with our
example software implementation.

RDM has only six command classes (see Table 2) in which the RDM packets can be
grouped.

Table 2. RDM command class defines
RDM command classes Value
DISCOVERY_COMMAND 0x10

DISCOVERY_COMMAND_RESPONSE 0x11

GET_COMMAND 0x20

GET_COMMAND_RESPONSE 0x21

SET_COMMAND 0x30

SET_COMMAND_RESPONSE 0x31

Table 3 shows the implemented RDM packets and the command class to which they
belong.

Table 3. Implemented RDM packets
Discovery class Get class Set class RDM PID Value
● DISC_UNIQUE_BRANCH 0x0001

● DISC_MUTE 0x0002

● DISC_UN_MUTE 0x0003

 ● DEVICE_INFO 0x0060

 ● SOFTWARE_VERSION_LABEL 0x00C0

 ● ● DMX_START_ADDRESS 0x00F0

 ● ● IDENTIFY_DEVICE 0x1000

Each RDM device has a 48-bit unique device ID or UID; the most significant 16-bits are
reserved for the manufacturer ID. Example software described in this manual uses the
NXP RDM manufacturer ID hexadecimal 0x3B10, given by the following formula:

#define MAN_ID ((32*32*('N'-'@')) + (32*('X'-'@')) + ('P'-'@'))

Any NXP customer that wants to create an RDM enabled DMX device should apply for
(and use) its own manufacturer ID at PLASA[4].

NXP Semiconductors AN11153
 DMX512/RDM slave using LPC111x

AN11153 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 1 February 2012 16 of 31

4.3.1 Device discovery
For the DMX512 master to be able to send RDM packets to specific RDM devices, the
DMX512 master must first discover the UIDs of the RDM devices connected to the DMX
transmission line. This is done by the discovery process, driven by the DMX512 master
or a host (PC) that controls the DMX512 master. This discovery process makes use of a
binary search mechanism to search over the total 48-bit address range. An RDM device
should only handle an RDM packet when this packet is addressed to this RDM device (its
own UID), or when it is a broadcast message. The RDM device shall only send a
response packet to the DMX512 master when the RDM packet was addressed to its own
UID, or when its UID was in the lower bound and upper bound UID range of the
DISC_UNIQUE_BRANCH RDM packet. Responding on the DISC_UNIQUE_BRANCH
RDM packet is the only time that collisions might take place on the DMX transmission
line. When an RDM device is uniquely identified during the discovery process, it is muted
by sending a DISC_MUTE RDM packet to this RDM device; this keeps it from interfering
with the discovery process (sending back responses to the DMX512 master) when the
search for other RDM devices is continued. For a full discovery, the discovery process
will start by un-muting all RDM devices by sending a DISC_UN_MUTE RDM broadcast
message. An RDM broadcast message is identified by the 48-bit destination UID having
the hexadecimal value 0xFFFFFFFFFFFF.

After the discovery process has finished, the DMX512 master can get the device info,
software version label, DMX start address, and identify state of the DMX512 slave.
Furthermore, the DMX512 master can assign another DMX start address to the DMX512
slave, and it can ask the slave to identify itself. The new DMX start address is not
permanently stored in some NVM, meaning that after a power cycle or reset the DMX512
slave will have its default DMX address as defined by the setting of the DIP switches.
When the DMX512 slave receives the RDM packet IDENTIFY_DEVICE with parameter
IDENTIFY_ON, it will turn ON the four DMX controllable LEDs (100 %) and the text “You
found me ” is shown on the LCD. After receiving the RDM packet IDENTIFY_DEVICE
with parameter IDENTIFY_OFF, the four DMX controllable LEDs will be turned OFF, and
the LCD is cleared. Disconnecting the DMX512 slave from the DMX transmission line
while its identify state is IDENTIFY_ON will NOT turn OFF the four LEDs and the identify
text is NOT removed from the LCD.

For more info on Remote Device Management see Reference [3].

4.4 Initialization sequence
When the LPC111x microcontroller starts up (as a result of the DMX512 slave being
powered), the stack pointer is loaded with the value from address 0:3, and the program
counter is loaded with the value from address 4:7 (the address of the reset handler). This
will result in the calling of main().

The function main() implements an infinite loop which receives data from the DMX
transmission line, drives the LEDs, and the (optional) LCD. Before the infinite loop is
entered the function SystemInit() is called, which sets up the main PLL that is used to set
the proper CPU clock, as configured by LPC_CORE_CLOCKSPEED_HZ in
‘app_config.h’. Function SystemInit() comes with CMSIS.

After calling SystemInit() the function bsp_init() is called. This function sets up the
system tick counter to 1000 ticks per second; it enables the HW blocks GPIO / I2C /
CT16B0 / CT16B1 / CT32B0 / UART / WDT; it configures the LPC pins for controlling the
LEDs / dip switches / UART pins / I2C pins / etc.; and it initializes the PWM counter_timer
driver, DMX UART driver, I2C driver, LCD driver and WDT driver. Then init_globals() is

NXP Semiconductors AN11153
 DMX512/RDM slave using LPC111x

AN11153 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 1 February 2012 17 of 31

called which reads out the DIP switches and determines the DMX start address of the
DMX512 slave. The four DIP switches are used to select 1 of 16 DMX slot ranges. Each
range covers (512 / 16 =) 32 slots; the last four slots are used to address the four DMX
controllable LEDs.

Table 4. Dip switch translation into DMX512 slave address
Dip switch setting DMX512 slave address (and slot usage)
0 DMX slave address = 29

This means:
Slot[29] = Red LED
Slot[30] = Green LED
Slot[31] = Blue LED
Slot[32] = White LED

x DMX slave address = (x * 32) + 29
This means:
Slot[(x*32)+29] = Red LED
Slot[(x*32)+30] = Green LED
Slot[(x*32)+31] = Blue LED
Slot[(x*32)+32] = White LED

15 DMX slave address = 509
This means:
Slot[509] = Red LED
Slot[510] = Green LED
Slot[511] = Blue LED
Slot[512] = White LED

When built with RDM support, this DMX address can be changed via RDM. After calling
init_globals() the DMX controlled LEDs are switched ON so that the user can check that
they are working; in addition, the text “NXP LPC1114 DMX512 slave” is shown on the
LCD. After this the main loop is entered.

4.5 DMX UART driver
The UART driver is specially written for receiving/transmitting DMX/RDM packets from/to
the DMX transmission line. A DMX packet always starts with a “Break” (the only
exception being the response on a DISC_UNIQUE_BRANCH packet), TX line being low
for at least 92 micro seconds, followed by a “Mark”, TX line being high for at least 12
micro seconds. See Reference [1] for more detailed information on DMX timing. This
sequence indicates the start of the DMX packet. The bytes following the synchronization
header have the structure of one start bit, eight data bits, no parity bits, and two stop bits,
making it a total of 11 bits per data byte. The first byte is the start byte (or slot 0) and is
followed by up to 512 bytes (slot 1 up till slot 512). The slots are also referred to as
channels, so a maximum of 512 channels can be driven by the DMX packet (slot 0 is
used for the type of packet indication). Slot 1 is channel 1, slot 2 is channel 2, up to 512.
The transmission speed is fixed at 250 kbit/s (+/- 2 %).

The UART driver is initialized by the BSP. Since the communication settings (baud rate,
parity, etc) are fixed for DMX, the function Uart_Init() does not have parameters for this in
its arguments list. Function Uart_Init() takes care for initializing the variables used within
the UART driver, initializes the UART hardware block, claims a milliseconds counter (to
be used for timeout purposes) via the BSP, and enables the UART receive data IRQ.
The UART driver uses double buffering (two internal byte arrays of 513 bytes each) for

NXP Semiconductors AN11153
 DMX512/RDM slave using LPC111x

AN11153 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 1 February 2012 18 of 31

receiving slot 0 up till slot 512 from the DMX transmission line. When one buffer is filled
with received slot values, a pointer to this buffer is passed back to the DMX512 slave
application while continuing to receive and store new slot values in the other buffer. The
next time a buffer is full, a pointer to this buffer is passed back to the DMX512 slave
application, preventing any unnecessary data copies.

The received slot values are stored in the buffers by the UART interrupt handler. In the
case of a NULL START packet the application can select the channels from these buffers
in which it is interested (depending on its DMX address), for dimming the LEDs. In the
case of an ASCII text packet, the buffer holds the complete text packet (maximum 510
characters including the terminating zero). In the case of an RDM packet, the buffer
holds the complete RDM packet.

4.6 PWM counter/timer driver
The DMX512 slave uses two 16-bit counter/timers to drive the four RGBW LEDs; each
counter/timer drives two LEDs using three of the four available match registers per CT to
create a Pulse Width Modulation signal to steer the LEDs.

For CT16B0, the output of match register 0 is used for driving the RED LED (PWM
mode); the output of match register 1 is used for driving the GREEN LED (PWM mode);
and match register 3 is used for setting the frequency for the RED and GREEN LEDs.

For CT16B1, the output of match register 0 is used for driving the BLUE LED (PWM
mode); the output of match register 1 is used for driving the WHITE LED (PWM mode);
and match register 3 is used for setting the frequency for the BLUE and WHITE LEDs.
The PWM frequency of all four LEDs is taken from the same define PWM_FREQ with a
value of 733 Hz.

The counter/timer driver exports three functions; only two are used in the DMX512 slave
software. The BSP calls the function Timer_PWM_Init() for the hardware blocks CT16B0
and CT16B1. This initialization function programs the registers of the requested
counter/timer and sets an initial pulse width duty cycle of 50 %.

The second function used in this counter/timer driver is Timer_PWM_Set_Duty_Cycle(),
which is called from the main loop when a NULL START packet is received. A linear
transformation is used from slot value into duty cycle, so a slot value of 0 corresponds
with a duty cycle of 0 %, a slot value of 5 corresponds with a duty cycle of 2 %, and a slot
value of 250 up to 255 corresponds with a duty cycle of 100 %.

4.7 Interrupts
The LPC111x microcontroller has four interrupt priority levels, where 0 is the highest and
3 the lowest priority level. Table 5 shows the interrupts that are handled by the software,
the interrupt priority of each interrupt, and between brackets the actual interrupt priority
level.

NXP Semiconductors AN11153
 DMX512/RDM slave using LPC111x

AN11153 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 1 February 2012 19 of 31

Table 5. Used interrupts and assigned priorities in DMX512 slave software
Interrupt Priority Description
I2C_IRQn Highest (1) Generated by the I2C HW block. Used for writing text to

the LCD panel.

UART_IRQn Middle (2) Generated by the UART HW block. Used for
transmitting/receiving data to/from the DMX transmission
line.

TickHandler Lowest (3) Generated by the systick timer. Used for implementing
software timers.

The TickHandler is called every millisecond to increment millisecond counters that are
used by the application. After each second the TickHandler toggles the RED heartbeat
LED. The millisecond counters overflow after 2^32 milliseconds (1193 hours = 49 days).

4.8 Software source code files
The software tree holding the source code files of the DMX512 slave is shown in Fig 11.
All DMX512 slave source code is contained in the directory LPC111xSlave. The files
“.cproject” and “.project” are LPCXpresso project files; the files LPC111xDMXslave.*” are
IAR EWARM project files.

Fig 11. Software tree of DMX512 slave

This directory also contains a “CMSIS” directory containing the CMSIS source code, and
all the source files of Fig 12 in the directory “src”, which is the source code that forms the
heart of the DMX512 slave.

A brief description of these source code files is shown in Table 6.

NXP Semiconductors AN11153
 DMX512/RDM slave using LPC111x

AN11153 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 1 February 2012 20 of 31

Table 6. Source code file description
File name Description
app_config.h Configures the DMX512 slave application

bsp.c This file implements the “board support package”, software functions
specific for this MCU and the electronics (LEDs/switches/etc) on the PCB

bsp.h Header file describing the exported functions by bsp.c

cr_startup_lpc111x.c This file contains the Reset vector and exception vector table (needed for
the LPCXpresso build only)

i2c.c Software driver for the I2C hardware block

i2c.h Header file describing the exported functions by i2c.c

lcd.c Software driver for the LCD mounted on the DMX512 slave PCB

lcd.h Header file describing the exported functions by lcd.c

main.c This file contains the application entry point, main loop and RDM packet
handling

main.h Header file describing the exported functions by main.c

manual_ctrl.c Implements joystick support for stand-alone RGB controller functionality

manual_ctrl.h Header file describing the exported functions by manual_ctrl.h

startup_armcm0.s Assembly file containing the Reset vector and exception vector table
(needed for the IAR build only)

timer_pwm.c SW driver for the counter/timer hardware blocks, using PWM to dim the
RGB LEDs

timer_pwm.h Header file describing the exported functions by timer_pwm.c

uart.c Software driver for the UART hardware block especially for DMX512
packet RTX

uart.h Header file describing the exported functions by uart.c

wdt.c Software driver for the WDT hardware block

wdt.h Header file describing the exported functions by wdt.c

NXP Semiconductors AN11153
 DMX512/RDM slave using LPC111x

AN11153 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 1 February 2012 21 of 31

Fig 12. DMX512 slave source code files

4.9 Building the software
The software tree includes project files for LPCXpresso v4.1.0_190. When using
LPCXpresso for building the DMX512 slave, use workspace location <your install
path>\DMX512 and import existing project <your install path>\DMX512\LPC111xSlave
and make sure to uncheck the checkbox "Copy projects into workspace".

The software tree also includes project files for the IAR Embedded Workbench for ARM
v6.20.4.

When the IAR workbench is installed, the project can be opened by double clicking the
file ‘LPC111xDMXslave.eww’.

The software can be configured via the source file ‘app_config.h’ which contains several
global software defines that are explained in Table 7 DMX512 slave configuration
options.

NXP Semiconductors AN11153
 DMX512/RDM slave using LPC111x

AN11153 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 1 February 2012 22 of 31

Table 7. DMX512 slave configuration options
Define Description
LPC_CORE_CLOCKSPEED_HZ Sets the CPU clock.

SUPPORT_RDM_OVER_DMX512 Must be enabled when the DMX512 slave must support
Remote Device Management

SUPPORT_I2C_BUS Must be enabled when text output on the LCD is required.

SUPPORT_I2C_MASTER_MODE Must be enabled when text output on the LCD is required.
The LPC111x is I2C master, the LCD is I2C slave.

SUPPORT_MANUAL_CONTROL Must be enabled when software support for the joystick is
wanted. This software shows how to use the DMX512
slave as a stand-alone RGB controller.

By default the CPU clock is configured at 48 MHz, being a multiple of 12 MHz.

A DEBUG build doesn’t optimize the executable image, which makes it possible to debug
the software. A RELEASE build is optimized for size, which reduces the flash memory
footprint significantly.

Table 8 shows the firmware sizes (in bytes) of a RELEASE build of the DMX512 slave for
a DMX512 only build, a DMX512 build with RDM support, and a full featured build.

Table 8. DMX512 slave firmware sizes
Firmware sizes
for DMX512
slave (Release
build)

IAR EWARM v6.20.4 LPCXpresso v4.1.0_190
Flash [Bytes] RAM [Bytes] Flash [Bytes] RAM [Bytes]

DMX512 3344 + 48 1435 3988 12 + 1108

DMX512+RDM 4876 + 48 1529 5668 12 + 1196

DMX512+RDM+
joystick

7800 + 164 1617 9208 48 + 1248

4.10 Summary
It has been tested/verified that the firmware currently implemented on the DMX512 slave
(as described in the previous paragraphs) also runs on 12 MHz, and that even at this
CPU speed it can handle the maximum DMX512 bus load (512+1 slots at 44 Hz). This
means that there are still enough CPU cycles available to add extra functionality to the
DMX512 slave.

NXP Semiconductors AN11153
 DMX512/RDM slave using LPC111x

AN11153 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 1 February 2012 23 of 31

5. Document management

5.1 Abbreviations

Table 9. Abbreviations
Acronym Description
BSP Board Support Package

CMSIS Cortex Microcontroller Software Interface Standard

CPU Central Processing Unit

CT Counter Timer

GPIO General Purpose Input/Output

HW Hardware

IRQ Interrupt Request

I2C Inter Integrated Circuit

LCD Liquid Crystal Display

LED Light Emitting Diode

MCU Micro Controller Unit

NVM Non Volatile Memory

PC Personal Computer

PCB Printed Circuit Board

PLASA The lead international membership body for those who supply technologies
and services to the event, entertainment and installation industries

PLL Phase Locked Loop

PWM Pulse Width Modulation

RDM Remote Device Management

RGB Red Green Blue

RTX Receive and Transmit

SW Software

UART Universal Asynchronous Receiver/Transmitter

UID Unique device ID

WDT Watchdog Timer

NXP Semiconductors AN11153
 DMX512/RDM slave using LPC111x

AN11153 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 1 February 2012 24 of 31

5.2 Referenced documents

Table 10. Referenced documents
Doc Title Version Author Issue Date

[1] ANSI E1.11 - Asynchronous Serial Data Transmission Standard
for Controlling Lighting Equipment and Accessories

2008 ESTA 20081204

[2] UM10398 - LPC111x/LPC11Cxx User manual Rev. 4 NXP 20110304

[3] ANSI E1.20 - Remote Device Management Over DMX512
Networks

2010 PLASA 20110104

[4] PLASA manufacturer ID’s
http://tsp.plasa.org/tsp/working_groups/CP/mfctrIDs.php

http://www.nxp.com/redirect/tsp.plasa.org/tsp/working_groups/CP/mfctrIDs�

NXP Semiconductors AN11153
 DMX512/RDM slave using LPC111x

AN11153 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 1 February 2012 25 of 31

6. Appendix A: Testing the DMX512 slave

6.1 USB power
Action Power the DMX512 slave (disconnected from DMX512 bus) via the USB connector

X5.
Result The BLUE ON LED (just above the USB connector) must light up continuously.

The LPC1114 must start to run the firmware resulting in:
• Turning on GREEN LED2.
• For one second the LEDS R (RED), G (GREEN), B (BLUE), W (WHITE) will light

up (only when the LEDS ENABLE jumper is placed) and the LCD must display the
text “NXP LPC1114 DMX512 slave”.

• After one second the LCD must display the text “No packets from DMX512 master”
and the RED LED1 starts to blink with a 1 Hz frequency

6.2 DMX512 input
Action Connect DMX512 slave to DMX512 bus which carries 512 slots of data.
Result The GREEN LED2 blinks with the refresh rate of the DMX512 packets on the bus.

The LEDS R (RED), G (GREEN), B (BLUE), W (WHITE) will light up depending on the
received data values of the slots assigned to these LEDS (DMX start address).
The LCD is blank.

6.3 DMX512 output
Action Connect DMX512 slave to DMX512 bus and do an RDM discovery.
Result Each DMX512 slave should be discovered via bi-directional RDM packets.

6.4 Reset button
Action Press the reset button while the board is powered (and keep it pressed).
Result The BLUE ON LED (just above the USB connector) stays on.

The RED LED1 stops blinking and doesn’t light up.
The GREEN LED2 turns off.
Any text on the LCD keeps being displayed.

Action Release the reset button.
Result The LPC1114 must start to run the firmware resulting in the GREEN LED2 to turn on.

For one second the LEDS R (RED), G (GREEN), B (BLUE), W (WHITE) will light up
(only when the LEDS ENABLE jumper is placed) and the LCD must display the text
“NXP LPC1114 DMX512 slave”.
After one second the LCD must display the text “No packets from DMX512 master”
and the RED LED1 starts to blink with a 1 Hz frequency.

NXP Semiconductors AN11153
 DMX512/RDM slave using LPC111x

AN11153 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 1 February 2012 26 of 31

6.5 Joystick

Action Press the joystick (center switch) while the board is powered, and keep it pressed
for 1 second.

Result The LCD must display the text:
 MANUAL CONTROL
 1 Go
The RED LED1 keeps blinking with a 1 Hz frequency

Action Use the UP / DOWN / LEFT / RIGHT / center switches of the joystick while the

board is powered and while in MANUAL CONTROL (see previous action).
Result With the joystick the user can navigate through the following menu (visible on the

LCD display):
 MANUAL CONTROL
 1 Go
 2 Set colors
 3 Version info
 4 Quit

 1.1 Mode 1
 1.2 Speed 10
 1.3 Dim 100
 1.4 Quit

 2.1 Color 1
 2.2 Hue 0
 2.3 Sat 100
 2.4 Bright 100
 2.5 Quit

NXP Semiconductors AN11153
 DMX512/RDM slave using LPC111x

AN11153 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 1 February 2012 27 of 31

7. Appendix B: Flashing the DMX512 Slave
When using IAR Embedded Workbench for ARM v6.20.4 and a j-link JTAG / SWD
+SWO probe, the firmware can be easily flashed in the LPC1114/301 of the DMX512
slave.

The IAR project also generates a binary file that can be flashed in the DMX512 slave
using a LPC-Link and LPCXpresso v4.1.0_190.

The steps for Windows7 are:

Step 1) Booting LPC-Link ‘boot_LPC-link.bat’

Step 2) Running the flash programming utility ‘flash_DMXslave.bat’

Fig 13. Flashing the DMX512 slave

For help with the command line flash programming tool using Linux, go to:

http://support.code-red-tech.com/CodeRedWiki/CommandLineFlashProgramming

http://www.nxp.com/redirect/support.code-red-tech.com/CodeRedWiki/CommandLineFlashProgramming�

Error! U
nknow

n docum
ent

property nam
e.

Error! U
nknow

n docum
ent property nam

e.
E

rror! U
nknow

n docum
ent property

NXP Semiconductors AN11153
 DMX512/RDM slave using LPC111x

AN11153 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 1 February 2012 28 of 31

8. Legal information

8.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

8.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s
own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP

Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

8.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

NXP Semiconductors AN11153
 DMX512/RDM slave using LPC111x

AN11153 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 1 February 2012 29 of 31

9. List of figures

Fig 1. DMX512 slave ... 3
Fig 2. DMX512 physical layer 4
Fig 3. Microcontroller on DMX512 slave 5
Fig 4. User interface on DMX512 slave 6
Fig 5. RGBW LED PWM output 6
Fig 6. I2C extension plug ... 7
Fig 7. Power circuit of DMX512 slave 7
Fig 8. Board layout of DMX512 slave 8
Fig 9. Software architecture of DMX512 slave 12
Fig 10. Flowchart of DMX512 slave software 14
Fig 11. Software tree of DMX512 slave 19
Fig 12. DMX512 slave source code files 21
Fig 13. Flashing the DMX512 slave 27

NXP Semiconductors AN11153
 DMX512/RDM slave using LPC111x

AN11153 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Application note Rev. 1 — 1 February 2012 30 of 31

10. List of tables

Table 1. DMX512 slave parts list 9
Table 2. RDM command class defines 15
Table 3. Implemented RDM packets 15
Table 4. Dip switch translation into DMX512 slave

address ... 17
Table 5. Used interrupts and assigned priorities in

DMX512 slave software 19
Table 6. Source code file description 20
Table 7. DMX512 slave configuration options 22
Table 8. DMX512 slave firmware sizes 22
Table 9. Abbreviations .. 23
Table 10. Referenced documents 24

NXP Semiconductors AN11153
 DMX512/RDM slave using LPC111x

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2012. All rights reserved.

For more information, visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 1 February 2012
Document identifier: AN11153

11. Contents

1. Document purpose .. 3
2. Introduction ... 3
3. DMX512 slave hardware 4
3.1 Physical layer ... 4
3.2 Microcontroller .. 5
3.3 User interface ... 6
3.4 LED interface and local LED feedback 6
3.5 Extension interface ... 7
3.6 System power .. 7
3.7 Board layout ... 8
4. DMX512 slave software 12
4.1 Architecture .. 12
4.2 Main software execution flow 12
4.3 RDM ... 15
4.3.1 Device discovery .. 16
4.4 Initialization sequence 16
4.5 DMX UART driver .. 17
4.6 PWM counter/timer driver 18
4.7 Interrupts .. 18
4.8 Software source code files 19
4.9 Building the software .. 21
4.10 Summary .. 22
5. Document management 23
5.1 Abbreviations ... 23
5.2 Referenced documents 24
6. Appendix A: Testing the DMX512 slave 25
6.1 USB power ... 25
6.2 DMX512 input .. 25
6.3 DMX512 output .. 25
6.4 Reset button ... 25
6.5 Joystick .. 26
7. Appendix B: Flashing the DMX512 Slave 27
8. Legal information .. 28
8.1 Definitions .. 28
8.2 Disclaimers ... 28
8.3 Trademarks .. 28
9. List of figures ... 29
10. List of tables .. 30
11. Contents ... 31

	1. Document purpose
	2. Introduction
	3. DMX512 slave hardware
	3.1 Physical layer
	3.2 Microcontroller
	3.3 User interface
	3.4 LED interface and local LED feedback
	3.5 Extension interface
	3.6 System power
	3.7 Board layout

	4. DMX512 slave software
	4.1 Architecture
	4.2 Main software execution flow
	4.3 RDM
	4.3.1 Device discovery

	4.4 Initialization sequence
	4.5 DMX UART driver
	4.6 PWM counter/timer driver
	4.7 Interrupts
	4.8 Software source code files
	4.9 Building the software
	4.10 Summary

	5. Document management
	5.1 Abbreviations
	5.2 Referenced documents

	6. Appendix A: Testing the DMX512 slave
	6.1 USB power
	6.2 DMX512 input
	6.3 DMX512 output
	6.4 Reset button
	6.5 Joystick

	7. Appendix B: Flashing the DMX512 Slave
	8. Legal information
	8.1 Definitions
	8.2 Disclaimers
	8.3 Trademarks

	9. List of figures
	10. List of tables
	11. Contents

