

AN10689
Full-duplex software UART for LPC2000
Rev. 01 — 17 January 2008 Application note

Document information
Info Content
Keywords LPC2000, UART, software

Abstract This application note illustrates how a simple software UART can be
added to a LPC2000 microcontroller in case more of these serial
interfaces are needed in the application.

NXP Semiconductors AN10689
LPC2000 software UART

Revision history
Rev Date Description

01 20080117 The initial release of the LPC2000 software UART application note
AN10689_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 17 January 2008 2 of 25

Contact information
For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

NXP Semiconductors AN10689
LPC2000 software UART
1. Introduction

LPC2000 family of microcontrollers offers a wide range of communication interfaces.
Each microcontroller contains at least two Universal Asynchronous Receiver/Transmitters
(UARTs). However, some applications require more of such peripherals to be available.
While attaching an external stand-alone UART could help in most of these situations ever
increasing price pressure and miniaturization requirements result in more demands for
software UARTs. This application note describes one possible implementation of a
full-duplex software UART.

2. Implementation basics

This solution relies on a single LPC2000 general purpose 32-bit timer and its ability to
toggle a dedicated pin when needed while monitoring another pin at the same time.

Suggested software UART supports transfer with format of 1 start bit, 8 data and 1 stop bit
with no parity bits. Baudrate and transmitter’s and receiver’s FIFO depth are selected
during the compiling process and once set can not be changed later. These two FIFOs are
easily accessible with help of several simple routines that allow individual character and/or
string transfers.

The demo has been developed with Keil’s uVision3 environment and tested on a
MCB2140 board. Standard baudrate of 9600 bits/s in systems running at 12 MHz or
60 MHz was easily achieved. Port pins P0.29 and P0.30 were selected for the software
UART transmit and receive lines. While hardware UART0 is not used in the demo, P0.29
and P0.30 are connected to P0.00 and P0.01 of the MCB2140 board. This is because
UART0 pins are equipped with an external interface components that enable
microcontroller to communicate over a serial link with another piece of equipment. Simply
put software UART pins are piggybacked to UART0 pins.

Main code as well as oscilloscope screenshots acquired during the validation process are
part of this document. Complete project can be downloaded from NXP microcontroller’s
support page on the Internet.

3. Transmission model

Figure 1 “Software UART transmission model” show details of the transmission model that
is implemented in this software UART.

An assumption was made that once a waveform is started to be generated (i.e. the
transmitter (Tx) line goes low because of the “start” bit) the CPU should have minimal
involvement all the way till the end of the “stop” bit. Reasons for this are twofold. Firstly,
the LPC2000 core has so much processing capabilities that it would be a waste of
resources to have it more involved in toggling a single digital pin output. Secondly, real life
examples easily prove that no matter how extensive timing analysis is performed on
system’s interrupt service routines (ISRs) and their execution time, there will always be a
scenario that will take more time than anticipated. While UART timing is a pretty relaxed
one where the transmitter and the receiver can operate with up to ±2.5 % relative error
from the nominal baudrate, achieving higher transfer rates is not all that simple.
AN10689_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 17 January 2008 3 of 25

NXP Semiconductors AN10689
LPC2000 software UART
In our transmission model two phases can be clearly identified: a data processing phase
and a waveform generation phase.

A single character output, as per the UART format specified earlier, is broken into a
sequence of pin toggling events on the software UART Tx pin. A LPC2000 peripheral that
easily deals with time and toggling pins when needed is a general-purpose 32-bit timer (in
particular TIMER0 was selected for this demo).

Given character is analyzed during the data processing phase and points in time (based
on the baudrate) when either a falling or a rising edge has to be generated on the Tx line
are stored in an array (the edge[...] array). Each UART transmitted character begins with a
falling edge (a “start” bit) and must have at least one rising edge (so that a “stop” bit can
be generated). In between, rising and falling edges will alternate in presence. Once all
edges are counted, the exact points in time when they will be generated are recalculated
based on a single TIMER0 counter reading. This timer reading is what is marked as a
reference point in Figure 1. The whole waveform timing will be based on this point in time.

Although this software UART is equipped with a Tx FIFO, it is not capable of producing
back-to-back transmissions. This is usually a price one has to pay when a communication
peripheral is implemented in software. A gap of a single bit when the Tx line is high (“idle
line”) will always be present in between two transmitted characters for several reasons.
The key one is that a transmission can be triggered in an environment with a lot of ISRs
firing off on their will. Having those ISRs interfering with timer setup code can result in
offsets that could completely void timing of the sw UART output.

Updating the edge[...] array does not take long and immediately after it is finished the
TIMER0 MAT3 channel is ready to perform first requested toggle on its physical pin and
generate a TIMER0 interrupt. Once this happens, a dedicated ISR simply updates MR3
register with data on the next toggle point. When all toggling is finally done, the last
remaining task for TIMER0 is to generate a “stop” bit.

Fig 1. Software UART transmission model

toggle events for ©a© (0x61)

0 01 1 1 000

reference
point

start
bit

stop
bit

edge[...]

delay
bit

data
processing

non-toggle
event

1
2 3 4 5 6

1
2

3
4

5
6

AN10689_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 17 January 2008 4 of 25

NXP Semiconductors AN10689
LPC2000 software UART
In case of the example shown in Figure 1 “Software UART transmission model”, the first
event occurs one bit after the reference point. This is when a falling edge is generated.
Following this a TIMER0 ISR is executed and the TIMER0 MR3 register is loaded with
edge[2] content. After another bit of delay, a toggle on MAT3 output will result in a rising
edge on this pin. This is how the “start” bit will be generated. This procedure goes on as
long as there are data in the edge[] array.

Having the requested waveform finished, the sw UART Tx checks for more data in the Tx
FIFO. If there is none, it turns itself off. Otherwise, the next available character is fetched
from the Tx FIFO and the cycle is repeated.

There are two routines provided with the demo code one can use to write into the Tx
FIFO. They are swu_tx_wr_chr(unsigned char) and swu_tx_wr(unsigned char*). The first
one updates the Tx FIFO content with a new character if the Tx FIFO is not full.
Otherwise, this routine will sit and wait for the software UART Tx to send at least one
character and make more space available. This routine is also responsible for triggering a
transmission in case the transmitter is not already active. The second routine basically
writes a character after a character to the Tx FIFO using the services of the first routine.

4. Reception model

The reception model is more complex than the transmission model simply because in this
case the microcontroller has to follow someone else lead -- it can never say for sure when
(or even if) the receiver’s (Rx) input will toggle or not. Figure 2 “Software UART reception
model” illustrates fundamentals of the receiving process implemented here.

A single falling edge on the Rx line triggers a reception of the character. TIMER0 with its
ability to capture timestamp of an edge event on the dedicated input is the perfect
candidate to provide hardware support for the software Rx UART.

Similarly to the way the software UART Tx functionality is implemented, it is the edges in
the received waveform that are used by the software UART Rx to estimate the actual data
sent. In this process the software UART keeps track of all input line level changes using

Fig 2. Software UART reception model

sampling points

0 01 1 1 000

reference
point

start
bit

stop
bit

trigger
edge

1 2 3 4 5 6 7 98

edges for ©a© (0x61)

1 2 3
4

5

reference
point
AN10689_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 17 January 2008 5 of 25

NXP Semiconductors AN10689
LPC2000 software UART
the TIMER0 CAP0 pin. At the same time, sampling points located in the middle of each of
the data bits in the waveform are compared against the timestamps the TIMER0 capture
pin provides. If an edge is recorded between two sampling points, the next data bit will be
different from the previous one. It is the change in the input line level that drives the whole
reception process. Once the second reference point is reach (the center of the “stop” bit),
the received content is tested for framing error. After this the data is stored in the Rx FIFO.
If the Rx FIFO is full, the latest data get dumped and an overflow indicator is set in the
software UART status register.

Let’s see some details of the receiving process shown in Figure 2 “Software UART
reception model”.

After a trigger/falling edge is detected by the TIMER0 CAP0 pin, the first reference point is
calculated. This is the center of the start bit, half a bit delayed from the first falling edge. At
the same time, the second reference point (the center of the “stop” bit) is calculated and
loaded into one of TIMER0 match channels. It is used to trigger an interrupt in case no
more edges are detected. Having no more edges detected will prevent the TIMER0 to
identify the “stop” bit and will keep it looping forever.

Since a falling edge has been detected, TIMER0 CAP0 pin is reconfigured to detect rising
edges as of that point on. In our example, the first edge following the trigger one is a rising
edge. The Rx software will evaluate the following parameters: timestamp of the previous
edge (the trigger one), timestamp of the current edge and all sampling points that lay in
between these two.

Note that there is only one sampling point between the trigger edge and edge1. This
means that only one bit was received and that was a “start” bit.

Now it’s time for CAP0 to start looking for a falling edge. Edge2 matches this description.
Sample point 2 is the only one between edge1 and edge2 and since edge1 was a rising
edge, bit “1” was received. CAP0 gets reconfigured again and starts looking for rising
edges on the Rx line.

As this example shows, edge3 follows after four bit intervals. Here is what happens now.

First, the software sets the last edge to the edge2 timestamp and the current one to what
is marked as edge3. The next step is to find out if any sampling points can be squeezed in
between. As we can see the first sampling point is sampling point 3. This results in a data
bit ‘0’ being shifted into the receiver. After this the last edge gets moved one bit closer to
edge3 and the same process is repeated. It is now sampling point 4 that is in between the
current edge and the last one. Again, a data bit ‘0’ gets shifted into the receiver and the
process continues as long as the last edge can be moved to the right yet not getting
beyond the current one and at least a single sampling point is in between them. If these
conditions are not met the CAP0 pin is reconfigured and a new edge is sought.

Functionality similar to the receiver trigger level interrupt (an interrupt after so many
characters get stored in the Rx FIFO) available in hardware UARTs is implemented in this
software, too. When the specified trigger level is reached (or exceeded) a user’s routine is
called. The demo code illustrates this with a simple routine.

Only one subroutine in charge of a single byte transfer out of the Rx FIFO is provided in
this application. It is left to the end user to build more complex code using this one.
AN10689_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 17 January 2008 6 of 25

NXP Semiconductors AN10689
LPC2000 software UART
5. Real-life results

This demo code was tested under two extreme conditions: in a system running an
external 12 MHz crystal only and in a system with the PLL on generating a system clock of
60 MHz. In both cases peripheral and system clock were of the same rate. In addition to
regular UART Tx and Rx lines, several debugging digital lines were added. Having a low
level on any of those lines indicate matching activity in progress. These lines are labelled
“CALL”, “TX_PRO”, “INT”, “INT_TX”, and “INT_RX” in the following screenshots.

The CALL line is low when a character based Tx FIFO loading routine is active. The
TX_PRO line is low while the CPU is preparing toggle point parameters for the next
character to be sent out. A low output on the INT line means that a TIMER0 interrupt was
requested. While software UART Tx interrupt is serviced the INT_TX line is low and while
the UART Rx interrupt is processed by the CPU the INT_RX line is low.

It is only when all these five diagnostics lines are high that the CPU is actually doing
something different than handling the software UART code. Amount of time made
available for the CPU will depend on two basic parameters of the demo code: the system
clock and the software UART buffer sizes. The real life experiment results will illustrate
impact each of these parameters has on the system performances.

5.1 Demo application output
Regardless of the selected system clock and Tx and Rx FIFO size, as long as it is a
human being that is interacting with the demo using a PC’s keyboard and a serial cable
connected to a LPC2140 UART0, the application is likely to produce an output similar to
the one in Figure 3 “Demo code output”.

Fig 3. Demo code output
AN10689_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 17 January 2008 7 of 25

NXP Semiconductors AN10689
LPC2000 software UART
After a greeting message is displayed (a nice example on using a string copy and a
character copy Tx routine in the demo code), the application ends in an infinite loop.
Received character interrupts will drive further character display. Once a character is
received on the software UART Rx line, it is echoed back via the software UART Tx line.
In this echo mode single character read and write FIFO routines are fully utilized.

The demo code is written so that the LPC2000 on-chip PLL is not used at all. However,
nothing prevents a user to turn it on and run the demo using a higher rate system clock.
One has to remember that in case the system clock is changed from 12 MHz to any other
value the serial data bit length specified as the “BIT_LENGTH” parameter must be
adjusted accordingly. A single bit length is calculated based on the system clock and the
desired baudrate as their ratio.

For example, in a 12 MHz system transferring serial data at 9600 bit/s, the BIT_LENGTH
is equal to 12000000/96000 = 1250.

5.2 Case 1: system clock 12 MHz, transmit FIFO size 16 bytes
This system runs with the MAM disabled (MAMCR = 0) and MAMTIM = 1. A single bit
length in terms of system clocks is BIT_LENGTH = 1250.

Fig 4. Greeting message output
AN10689_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 17 January 2008 8 of 25

NXP Semiconductors AN10689
LPC2000 software UART

Fig 5. Rapid loading of 16 characters is followed by a long period of waiting; generated
bit rate is 9600 bit/s

Fig 6. Most of the time CPU is waiting for the software UART to transmit some data (low
CALL line indicates constant attempts to write data into the Tx FIFO)
AN10689_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 17 January 2008 9 of 25

NXP Semiconductors AN10689
LPC2000 software UART

Fig 7. At the end of the message the CPU can fill the Tx FIFO to its maximum (16 bytes)
and continue doing other things (the CALL line becomes high)

(1) Rx line edge processing interrupt (start bit): 26 µs
(2) Rx line edge processing interrupt (4 bits): 70 µs
(3) Sending received character to output: 140 µs
(4) Tx line toggle interrupt (constant): 18 µs

Fig 8. Receiving a character and sending it to output triggers numerous interrupts of
various lengths; software UART interrupts should be assigned the highest
priority since any distortion in the waveform can impact actual data content
AN10689_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 17 January 2008 10 of 25

NXP Semiconductors AN10689
LPC2000 software UART
5.3 Case 2: system clock 12 MHz, transmit FIFO size 128 bytes

Fig 9. Increasing the Tx FIFO depth from 16 bytes to 128 bytes significantly improves
system performance; the CPU spends less the time waiting for the software UART
to actually do something

Fig 10. The Tx FIFO is larger than the whole greeting message (128 bytes vs. 122 bytes);
Tx FIFO loading is interrupted by the software UART transmitter interrupt;
individual interrupt servicing does not depend on the FIFO size
AN10689_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 17 January 2008 11 of 25

NXP Semiconductors AN10689
LPC2000 software UART
5.4 Case 3: system clock 60 MHz, transmit FIFO size 16 bytes
This system runs with the MAM fully enabled (MAMCR = 2) and MAMTIM = 3. The PLL is
configured in the start-up file. A single bit length is BIT_LENGTH = 6250 system clocks.

Fig 11. Greeting message output; increased system clock does not help - the Tx FIFO is
still too small to handle this amount of data

Fig 12. The Tx FIFO gets filled-up sooner, yet the CPU is stalled as it was the case before
AN10689_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 17 January 2008 12 of 25

NXP Semiconductors AN10689
LPC2000 software UART

6. Discussion

This implementation of a communication module tried to use as few LPC2000 peripherals
as possible, yet providing a useful full-duplex software UART functionality. Having to
combine time-tracking, generation of a controlled output within a tightly specified spec and
monitoring an input pin at the same time led us to believe that a general-purpose 32-bit
timer could be the right solution.

Real-life system examples were oriented toward interaction between a machine and a
human. In such setup response time is usually not critical. Yet, in systems where two
machines are communicating this might not be the case.

Two basic parameters have been varied in the real-life examples and impacts of these
changes have been tracked on several oscilloscope screenshots. One can easily see that
it is the size of the Tx FIFO that made the most significant impact to the overall system
performance. In case of a shallow Tx FIFO, the CPU spends a lot of time waiting for the
character transfer routine to successfully put one byte into the Tx FIFO before the CPU
can do anything else. Until there is a place in this FIFO for more data, the byte transfer
routine will sit and wait and wait and wait. At low baudrates this can have a significant
impact and effectively render systems’ ability to do anything useful while simple text
output is performed.

(1) rx line edge processing interrupt (start bit): 5.2 µs
(2) rx line edge processing interrupt (4 bits): 13.2 µs
(3) sending received character to output: 27 µs
(4) Tx line toggle interrupt (constant): 3.2 µs

Fig 13. Higher system clock reduces software UART receiver’s and transmitter’s TIMER0
interrupt code execution
AN10689_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 17 January 2008 13 of 25

NXP Semiconductors AN10689
LPC2000 software UART
Increasing the system frequency helped as expected in shortening the ISR execution. It is
of utmost importance to carefully select the system clock in a system with communication
peripherals implemented in software.

The demo code we are running here has no other interrupts active. Yet, in case of the
system frequency of only 12 MHz, having an IRQ requesting CPU’s attention while the
CPU is transferring data from the software UART Rx to the Tx can result in all kinds of
unpleasant situations. Interrupt latency and the worst case software UART imposed
delays must be thoroughly investigated and analyzed before other interrupt sources are
allowed into the embedded system.

The need for more interrupt sources and handling their ISRs could potentially impact the
software UART significantly. In a 12 MHz system, a non-software UART ISR occupying
the CPU for more than 100 µs will completely disrupt the software UART Rx functionality.
Implemented “stop” bit timeout will kick-in after a while and the software UART is likely to
get back on track. However, as a result of this event, at least one invalid character will be
sitting in the Rx FIFO and will be picked up by a higher level application later on.
AN10689_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 17 January 2008 14 of 25

NXP Semiconductors AN10689
LPC2000 software UART
7. AppendixDemo code

/**/
/* */
/* LPC2148 Software UART (Tx&Rx) */
/* */
/* NXP Semiconductors */
/* 2007/12/20 20:15 */
/* */
/* This software acts as a standard UART with 1 start, 8 data and 1 */
/* stop bit (no parity) setup. TIMER0 MAT0.3 on P0.29 (pin 14) generates*/
/* UART output while TIMER0 CAP0.0 on P0.30 (pin 15) receives serial */
/* data. */
/* */
/* While P0.10 is low, the routine that calculates future transmission */
/* parameters is active. P0.12 is low while the TIMER0 interrup service */
/* routine (ISR) is running. P0.15 is low while the software UART */
/* transmission portion of the TIMER0 ISR is executed. P0.17 indicates */
/* when the software UART receiving related TIMER0 ISR is active. P0.18 */
/* activity matches write access to the tx FIFO. */
/* */
/* For this demo to run successfully pin P0.00 must be connected to */
/* P0.29 and pin P0.01 must be connected to P0.30. A PC or similar */
/* equipment capable of handling ASCII data at 9600 bit/s must be */
/* connected to the UART0 of the microcontroller. */
/* */
/* UART0 of the LPC2148 is not used in this demo. Regular U0Tx and U0Rx */
/* functionality is replaced by the software uart pins. UART0 pins are */
/* selected because most of the development boards already have needed */
/* hardware for voltage translation between the microcontroller and an */
/* external device. */
/* */
/* fosc = 12 MHz; PLL is not used; PCLK=CCLK */
/* */
/* pins used: */
/* */
/* Pin P0.00 must be connected to P0.29 and P0.01 must be tied to P0.30 */
/* when running this demo! */
/* == */
/* */
/* P0.00: [GPI] - needed because of a standard interface hw */
/* P0.01: [GPI] - needed because of a standard interface hw */
/* P0.10: TX_PRO [GPO] - next tx parameter processing (active low) */
/* P0.12: INT [GPO] - TIMER0 interrupt indicator (active low) */
/* P0.15: INT_TX [GPO] - swu tx interrupt indicator (active low) */
/* P0.17: INT_RX [GPO] - swu rx interrupt indicator (active low) */
/* P0.18: CALL [GPO] - tx UART routine call ind. (active low) */
/* P0.29: SWU_Tx [MAT0.3]- software UART Tx pin */
/* P0.30: SWU_RX [CAP0.0]- software UART Rx pin */
/* */
/**/
AN10689_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 17 January 2008 15 of 25

NXP Semiconductors AN10689
LPC2000 software UART
#include "LPC214x.h"
#define pin_txpro (1<<10)
#define pin_int (1<<12)
#define pin_inttx (1<<15)
#define pin_intrx (1<<17)
#define pin_call (1<<18)
#define pin_swrx (1<<30)

void T0_Handler(void) __irq;
void IRQ_default(void) __irq;

volatile unsigned char cnt_edges; //no of char edges
volatile unsigned char edge_index; //edge index for output
volatile unsigned char swu_tx_st; //sw UART status
volatile unsigned long int edge[11]; //array of edges
volatile unsigned char last_edge_index, char_end_index; //last two events index

void swu_tx(void); //tx param processing

//software UART configurable parameters begin
#define TXBUFF_LEN 16
#define RXBUFF_LEN 16
//12000000/9600 = 1250 PCLKs
//PCLK=12MHz:
#define BIT_LENGTH 1250
//60000000/9600 = 6250 PCLKs
//PCLK=60MHz:
//#define BIT_LENGTH 6250
#define STOP_BIT_SAMPLE (9*BIT_LENGTH)
//software UART configurable parameters end

//definitions common for transmitting and receivign data begin
volatile unsigned long int swu_status;
#define RX_OVERFLOW 4
#define RX_ACTIVE 2
#define TX_ACTIVE 1
#define ADJUST (1<<30)
#define ALL1 0x000000FF
//definitions common for transmitting and receivign data end

//software UART Tx related definitions begin
volatile unsigned long int tx_fifo_wr_ind,tx_fifo_rd_ind;
volatile signed long int swu_tx_cnt, swu_tx_trigger;
volatile unsigned short int swu_tx_fifo[TXBUFF_LEN];
void swu_tx_wr(unsigned char *);
void swu_tx_wr_chr(unsigned char);
//software UART Tx related definitions end

//software UART Rx related definitions begin
volatile unsigned long int rx_fifo_wr_ind,rx_fifo_rd_ind;
volatile signed long int swu_rx_cnt, swu_rx_trigger;
AN10689_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 17 January 2008 16 of 25

NXP Semiconductors AN10689
LPC2000 software UART
volatile unsigned char swu_bit, cnt, cnt_bits, swu_rx_chr_fe;
volatile unsigned long int swu_rbr, swu_rbr_mask;
volatile signed long int edge_last, edge_sample, edge_current, edge_stop;
volatile unsigned short int swu_rx_fifo[RXBUFF_LEN];
unsigned char swu_rx_rd_chr(void);
void swu_rx_isr(void);
//software UART Rx related definitions end

int main(void){

 PCONP = 0x00000000; //turn off all peripherals
 VPBDIV = 0x01; //PCLK = CCLK

 //setup the software uart
 swu_tx_cnt = 0; //no data in the swu tx FIFO
 tx_fifo_wr_ind = 0; //last char written was on 0
 tx_fifo_rd_ind = 0; //last char updated was on 0
 swu_rx_trigger = 1; //>=1 char gnrts a rx interrupt
 swu_status = 0; //neither tx nor rx active

 //TIMER0 setup
 PCONP |= (1<<1); //enable TIMER0 clock
 T0TCR = 0x00; //stop TIMER0
 T0TCR = 0x02; //reset counters
 T0TCR = 0x00; //release the reset
 T0IR = 0x0FF; //clear all TIMER0 flags
 T0PR = 0x00000000; //no prescaler
 T0MR0 = 0x3FFFFFFF; //TIMER0 counts 0 - 0x3FFFFFFF
 T0MCR = 2; //reset TIMER0 on MR0
 T0EMR = 0x0008; //drive MAT0.3 high
 T0TCR = 0x01; //let TIMER0 run

 //VIC setup
 VICIntSelect = 0x00000000; //all interrupts are IRQs
 VICIntEnClr = 0xFFFFFFF0; //disable all interrupts
 VICVectCntl0 = 0x20 | 4; //use slot 0 for TIMER0
 VICVectAddr0 = (unsigned long)T0_Handler; //set the TIMER0 handler
 VICDefVectAddr = (unsigned long)IRQ_default; //set the default handler
 VICIntEnable = 1<<4; //enable TIMER0 interrupts

 //port pin control: P0.29
 PINSEL0 = 0x00000000; //P0 pins are GPIOs except...
 PINSEL1 = (PINSEL1 & 0xC3FFFFFF) | 0x3C000000; //... P0.30:CAP0.0,P0.29:MAT0.3
 IODIR0 = pin_txpro | pin_int | //set indicator pins to high...
 IOSET0 = pin_txpro | pin_int | //...
 pin_inttx | pin_intrx | pin_call; //...
 IOSET0 = pin_txpro | pin_int | //...
 pin_inttx | pin_intrx | pin_call; //...

 while((IOPIN0&pin_swrx)==0); //wait for 1 on sw UART rx line
 T0IR = 0x10; //clear CAP0.0 flag
AN10689_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 17 January 2008 17 of 25

NXP Semiconductors AN10689
LPC2000 software UART
 T0CCR = 0x0006; //int on CAP0.0 falling edge
 cnt_bits = 0; //reset the rx bit count

 //main demo code outputs a greeting message and
 //waits for user's input to echo it
 swu_tx_wr("\x0D\x0A\x0D\x0A\x0D\x0A\x0D\x0A");
 swu_tx_wr("Software UART demo code\x0D\x0A");
 swu_tx_wr("=======================\x0D\x0A");
 swu_tx_wr("This application echoes characters entered by the user.\x0D\x0A");
 swu_tx_wr_chr('\x0D');
 swu_tx_wr_chr('\x0A');
 swu_tx_wr("Echo: ");

 while(1); //idle loop
}

//this routine prepares an array off toggle points that will be used to generate
//a waveform for the currently selected character in the software UART transmission
//FIFO; at the end this routine starts the transmission intself
void swu_tx(void){
 unsigned char bit,i;
 unsigned long int ext_data, delta_edges, mask, reference;

 IOCLR0 = pin_txpro; //indicate routine begin
 if(tx_fifo_wr_ind!=tx_fifo_rd_ind){ //data to send, proceed
 swu_status |= TX_ACTIVE; //sw uart tx is active
 tx_fifo_rd_ind++; //update the tx fifo ...
 if(tx_fifo_rd_ind==TXBUFF_LEN) //read index...
 tx_fifo_rd_ind = 0; //...
 ext_data = (unsigned long int) swu_tx_fifo[tx_fifo_rd_ind]; //read the data
 ext_data = 0xFFFFFE00 | (ext_data<<1); //prepare the pattern
 edge[0] = BIT_LENGTH; //at least 1 falling edge...
 cnt_edges = 1; //... because of the START bit
 bit = 1; //set the bit counter
 reference = 0x00000000; //init ref is 0 (start bit)
 mask = 1<<1; //prepare the mask
 delta_edges = BIT_LENGTH; //next edge at least 1 bit away
 while(bit!=10){ //until all bits are examined
 if((ext_data&mask)==(reference&mask)){ //bit equal to the reference?
 delta_edges += BIT_LENGTH; //bits identical=>update length
 } //...
 else{ //bits are not the same:
 edge[cnt_edges] = //store new...
 edge[cnt_edges-1] + delta_edges; //... edge data
 reference = ~reference; //update the reference
 delta_edges = BIT_LENGTH; //reset delta_ to 1 bit only
 cnt_edges++; //update the edges counter
 }
 mask = mask<<1; //update the mask
 bit++; //move on to the next bit
 }
AN10689_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 17 January 2008 18 of 25

NXP Semiconductors AN10689
LPC2000 software UART
 edge[cnt_edges]= //add the stop bit end...
 edge[cnt_edges-1]+delta_edges; //... to the list
 cnt_edges++; //update the number of edges
 last_edge_index = cnt_edges-2; //calculate the last edge index
 char_end_index = cnt_edges-1; //calc. the character end index

 edge_index = 0; //reset the edge index
 reference = T0TC + BIT_LENGTH; //get the reference from TIMER0
 for(i=0;i!=cnt_edges;i++) //recalculate toggle points...
 edge[i] = (edge[i] + reference) //... an adjust for the...
 & 0x3FFFFFFF; //... timer range
 T0MR3 = edge[0]; //load MR3
 T0MCR = T0MCR | (1<<9); //enable interrupt on MR3 match
 T0EMR = T0EMR | (3<<10); //enable toggle on MR3 match
 }
 IOSET0 = pin_txpro; //indicate routine exit
 return; //return from the routine
}

//this is the TIMER0 interrupt service routine
//key software UART transmit and receive code resides here
void T0_Handler(void)__irq
{
 signed long int edge_temp;

 IOCLR0 = pin_int; //indicate TIMER0 isr activity

 //sw uart receive isr code begin
 if((T0IR&0x10)!=0x00){ //capture interrupt occured:
 IOCLR0 = pin_intrx; //rx interrupt activity begin
 T0IR = 0x10; //edge dtcted=>clear CAP0 flag
 T0CCR = 0x0004 | (0x0003 - (T0CCR&0x0003)); //change the targeted edge
 if((swu_status&RX_ACTIVE)==0){ //sw UART not active (start):
 edge_last = (signed long int) T0CR0; //initialize the last edge
 edge_sample = edge_last+(BIT_LENGTH>>1);//initialize the sample edge
 if(edge_sample<edge_last) //adjust the sample edge...
 edge_sample |= ADJUST; //... if needed
 swu_bit = 0; //rx bit is 0 (a start bit)
 T0IR = 0x02; //clear MAT1 int flag
 edge_stop = edge_sample+STOP_BIT_SAMPLE;//estimate the end of the byte
 if (edge_stop<edge_last) //adjust the end of byte...
 edge_stop |= ADJUST; //... if needed
 T0MR1 = edge_stop; //set MR1 (stop bit center)
 T0MCR = T0MCR | (1<<3); //int on MR1
 cnt = 9; //initialize the bit counter
 swu_status |= RX_ACTIVE; //update the swu status
 swu_rbr = 0x0000; //reset the sw rbr
 swu_rbr_mask = 0x0001; //initialize the mask
 }
 else{ //reception in progress:
 edge_current = (signed long int) T0CR0; //initialize the current edge
AN10689_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 17 January 2008 19 of 25

NXP Semiconductors AN10689
LPC2000 software UART
 if (edge_current<edge_last) //adjust the current edge...
 edge_current |= ADJUST; //... if needed
 while(edge_current>edge_sample){ //while sampling edge is within
 if(cnt_bits!=0){
 if(swu_bit!=0) //update data...
 swu_rbr |= swu_rbr_mask; //...
 swu_rbr_mask = swu_rbr_mask<<1; //update mask
 }
 cnt_bits++; //update the bit count
 edge_temp = edge_last + BIT_LENGTH; //estimate the last edge
 if(edge_temp<edge_last) //adjust...
 edge_last = edge_temp | ADJUST; //... the last edge...
 else //... if...
 edge_last = edge_temp; //... needed
 edge_temp = edge_sample+BIT_LENGTH; //estimate the sample edge
 if(edge_temp<edge_sample) //adjust...
 edge_sample = edge_temp|ADJUST; //... the sample edge...
 else //... if...
 edge_sample = edge_temp; //... needed
 cnt--; //update the no of rcved bits
 }
 swu_bit = 1 - swu_bit; //change the received bit
 }
 IOSET0 = pin_intrx; //rx interrupt activity end
 }
 if((T0IR&0x02)!=0x00){ //stop bit timing matched:
 IOCLR0 = pin_intrx; //rx interrupt activity begin
 T0IR = 0x02; //clear MR1 flag
 if(cnt!=0){ //not all data bits received...
 swu_rbr = swu_rbr<<cnt; //... make space for the rest...
 if(swu_bit!=0) swu_rbr += ALL1<<(8-cnt);//... add needed 1(s)...
 } //...
 swu_rbr &= 0x00FF; //extract data bits only
 if(swu_bit==0) //if the stop bit was 0 =>
 swu_rbr |= 0x00000100; //... framing error!
 swu_status &= ~RX_ACTIVE; //sw UART not active any more
 cnt_bits = 0; //reset the rx bit count
 if(swu_rx_cnt!=RXBUFF_LEN){ //store the rcved character...
 swu_rx_cnt++; //... into the sw UART...
 rx_fifo_wr_ind++; //... rx FIFO
 if(rx_fifo_wr_ind==RXBUFF_LEN) rx_fifo_wr_ind = 0; //...
 swu_rx_fifo[rx_fifo_wr_ind] = swu_rbr; //...
 if(swu_rx_cnt>=swu_rx_trigger) swu_rx_isr(); //rx 'isr' trig excded
 }
 else{
 swu_status |= RX_OVERFLOW; //rx FIFO full => overflow
 }
 T0MCR &= ~(7<<3); //MR0 impacts TIMER0 no more
 IOSET0 = pin_intrx; //rx interrupt activity end
 }
 //sw uart receive isr code end
AN10689_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 17 January 2008 20 of 25

NXP Semiconductors AN10689
LPC2000 software UART
 //sw uart transmit isr code begin
 if((T0IR&0x08)!=0){ //tx routine interrupt begin
 IOCLR0 = pin_inttx; //tx interrupt activity begin
 T0IR = 0x08; //clear the MAT3 flag
 if(edge_index==char_end_index){ //the end of the char:
 T0MCR &= ~(7<<9); //MR3 impacts T0 ints no more
 swu_tx_cnt--; //update no.of chars in tx FIFO
 if(tx_fifo_wr_ind!=tx_fifo_rd_ind) //if more data pending...
 swu_tx(); //... spin another transmission
 else
 swu_status &= ~TX_ACTIVE; //no data left=>turn off the tx
 }
 else{ //not the end of the character:
 if(edge_index==last_edge_index) //is this the last toggle?
 T0EMR = 0x000003FF; //no more toggle on MAT3
 edge_index++; //update the edge index
 T0MR3 = edge[edge_index]; //prepare the next toggle event
 }
 IOSET0 = pin_inttx; //tx interrupt activity end
 } //tx routine interrupt end
 //sw uart transmit isr code end

 VICVectAddr = 0xFF; //update the VIC
 IOSET0 = pin_int; //indicate TIMER1 isr end
}

void IRQ_default(void)__irq //default IRQ isr
{

VICVectAddr=0xFF; //update the VIC
}

//this routine transfers a string of characters one by one into
//the software UART tx FIFO
void swu_tx_wr(unsigned char * ptr_out){
 while(*ptr_out!=0x00){ //read all chars...
 swu_tx_wr_chr(*ptr_out); //...put the char in tx FIFO...
 ptr_out++; //...move to the next char...
 } //...
 return; //return from the routine
}
//this routine puts a single character into the software UART tx FIFO
void swu_tx_wr_chr(unsigned char out_char){
 IOCLR0 = pin_call; //write access to tx FIFO begin
 while(swu_tx_cnt==TXBUFF_LEN); //wait if the tx FIFO is full
 tx_fifo_wr_ind++; //update the write pointer...
 if(tx_fifo_wr_ind==TXBUFF_LEN) //...
 tx_fifo_wr_ind = 0; //...
 swu_tx_fifo[tx_fifo_wr_ind] = out_char; //put the char into the FIFO
 swu_tx_cnt++; //update no.of chrs in the FIFO
 if((swu_status&TX_ACTIVE)==0) swu_tx(); //start tx if tx is not active
AN10689_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 17 January 2008 21 of 25

NXP Semiconductors AN10689
LPC2000 software UART
 IOSET0 = pin_call; //write access to tx FIFO end
 return; //return from the routine
}

//this routine reads a single character from the software UART rx FIFO
//if no new data is available, it returns the last one read; framing error
//indicator is updated, too
unsigned char swu_rx_rd_chr(void){
 if(swu_rx_cnt!=0){ //update the rx indicator...
 rx_fifo_rd_ind++; //... if data are present...
 if(rx_fifo_rd_ind==RXBUFF_LEN) rx_fifo_rd_ind = 0; //...
 swu_rx_cnt--; //...
 }
 if((swu_rx_fifo[rx_fifo_rd_ind]&0x0100)==0) //update...
 swu_rx_chr_fe = 0; //... the framing error...
 else //... indicator...
 swu_rx_chr_fe = 1; //...
 swu_status &= ~RX_OVERFLOW; //clear the overfloe flag
 return((unsigned char)(swu_rx_fifo[rx_fifo_rd_ind]&0x00FF)); //return data
}

//this code acts as a standard uart rx interrupt routine for the specified
//received count character trigger; this routine is called at the end
//of the received byte that increased overall number of characters in the
//rx FIFO to or beyond the specified trigger
void swu_rx_isr(void){
 swu_tx_wr_chr(swu_rx_rd_chr()); //transmit the last rcvd char
 return; //return from the routine
}

AN10689_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 17 January 2008 22 of 25

NXP Semiconductors AN10689
LPC2000 software UART
8. Abbreviations

Table 1. Abbreviations
Acronym Description
UART Universal Asynchronous Receiver/Transmitter

ISR Interrupt Service Routine

Tx Transmitter

Rx Receiver
AN10689_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 17 January 2008 23 of 25

NXP Semiconductors AN10689
LPC2000 software UART
9. Legal information

9.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.

9.2 Disclaimers
General — Information in this document is believed to be accurate and
reliable. However, NXP Semiconductors does not give any representations or
warranties, expressed or implied, as to the accuracy or completeness of such
information and shall have no liability for the consequences of use of such
information.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in medical, military, aircraft,
space or life support equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

9.3 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.
AN10689_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 17 January 2008 24 of 25

NXP Semiconductors AN10689
LPC2000 software UART
10. Contents

1 Introduction . 3
2 Implementation basics 3
3 Transmission model . 3
4 Reception model . 5
5 Real-life results . 7
5.1 Demo application output 7
5.2 Case 1: system clock 12 MHz, transmit FIFO size

16 bytes . 8
5.3 Case 2: system clock 12 MHz, transmit FIFO size

128 bytes . 11
5.4 Case 3: system clock 60 MHz, transmit FIFO size

16 bytes . 12
6 Discussion . 13
7 AppendixDemo code . 15
8 Abbreviations. 23
9 Legal information. 24
9.1 Definitions. 24
9.2 Disclaimers . 24
9.3 Trademarks. 24
10 Contents . 25
© NXP B.V. 2008. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 17 January 2008
Document identifier: AN10689_1

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.

	1. Introduction
	2. Implementation basics
	3. Transmission model
	4. Reception model
	5. Real-life results
	5.1 Demo application output
	5.2 Case 1: system clock 12 MHz, transmit FIFO size 16 bytes
	5.3 Case 2: system clock 12 MHz, transmit FIFO size 128 bytes
	5.4 Case 3: system clock 60 MHz, transmit FIFO size 16 bytes

	6. Discussion
	7. AppendixDemo code
	8. Abbreviations
	9. Legal information
	9.1 Definitions
	9.2 Disclaimers
	9.3 Trademarks

	10. Contents

