

AN10587
Interfacing NXP bridge IC with NXP ARM microcontroller
Rev. 01 — 23 February 2007 Application note

Document information
Info Content
Keywords SC16IS752, LPC2148, Bridge IC to microcontroller, serial interface

Abstract The operation and description of NXP LPC2100 Series microcontroller
such as LPC2148, ARM7-based microcontrollers to an NXP bridge IC
such as SC16IS752, SPI/I2C-bus to 2-channel UART/IrDA plus GPIO for
high-speed serial data communication is discussed in this application
note. In addition, the source code in C language, containing
communication routines between the LPC2148 microcontroller and the
SC16IS752 bridge IC is provided. This application note is also applicable
to other bridge ICs such as SC16IS740, SC16IS750, SC16IS760 and
SC16IS762.

NXP Semiconductors AN10587
Interfacing NXP bridge IC with NXP ARM microcontroller

Revision history
Rev Date Description

01 20070223 Application note; initial version.
AN10587_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 23 February 2007 2 of 11

Contact information
For additional information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

NXP Semiconductors AN10587
Interfacing NXP bridge IC with NXP ARM microcontroller
1. Introduction

The NXP Bridge IC is a new generation of interface solutions for managing high-speed
serial data communication among various bus interfaces such as SPI, I2C-bus, UART
including RS-232 and RS-485, IrDA, and GPIO. The Bridge IC is commonly used to
overcome the limitation of the host bus interface to peripherals and provides easy to
interface with existing different serial buses interface.

The description of the block diagram, hardware, firmware, and software are described in
the next paragraph for users to quickly understand the implementation of the NXP
LPC2100 Series microcontroller to NXP Bridge IC serial interface for RS-232 point-point
communication, RS-485 multi-drop application, IrDA wireless links communication, and
GPIO interface. The source code in C language for SPI-bus interface is provided to show
how to write a simple communication program between the microcontroller and the
Bridge IC serial interface. The goal is to help users to design the Bridge IC in their
application and also shorten their product development cycle.

2. Block diagram

The block diagram depicted in Figure 1 shows the circuit connection between an NXP
Bridge IC such as SC16IS752 and NXP LPC2100 Series microcontroller such as
LPC2148. The Bridge IC offers simple, flexible, and minimal connection to the
microcontroller. The Bridge IC embedded SPI and I2C-bus for the host interface so the
microcontroller can easily control the Bridge IC with few wires connection through SPI or
I2C-bus, which is a widely-used serial bus interface. If the I2C-bus is selected, the Bridge
can interface to the microcontroller with 2-wire connection. The signals on the 2 wires are
SCL (Serial Clock) and SDA (Serial Data). If the SPI-bus interface is selected, the Bridge
IC can interface to the microcontroller with 4-wire connection. The signals on the 4 wires
shown in Figure 2 are SO (master input Slave Output), SI (master output Slave Input),
CS (slave Chip Select), and SCLK (SPI Clock).

After the microcontroller and Bridge IC are wired properly and their connection is
established, the microcontroller can send data to and receive data from UART devices via
the Bridge IC. The Bridge IC receives the data from the microcontroller via the SPI or
I2C-bus interface and sends the data to the UART devices via RS-232 or RS-485 bus
interface and when the Bridge IC receives the data from the UART/IrDA/GPIO devices,
the Bridge IC will notify the microcontroller by generating an interrupt signal, then the
microcontroller can access the data from the Bridge IC via the SPI or I2C-bus interface.

Fig 1. SC16IS752 bridge IC interface to LPC2148 microcontroller

SC16IS752

002aac830

SPI/I2C-bus

interrupt

NXP
microcontroller

LPC2148
NXP

Bridge IC

RS-232 / RS-485
TRANSCEIVERS

(optional)

ARM7-based
microcontroller

IrDA

GPIO
AN10587_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 23 February 2007 3 of 11

NXP Semiconductors AN10587
Interfacing NXP bridge IC with NXP ARM microcontroller

3. Hardware description

The hardware consists of the two major parts: the microcontroller and the Bridge IC. The
Bridge IC provides a seamless interface convergence between the SPI or I2C-bus and
RS-232 or RS-485 protocols and vice versa. In addition, the Bridge IC checks the data
transmission for errors and maintains very high data throughput.

The functions of the two major parts are described as follows:

• NXP LPC2148 microcontroller
The microcontroller connection to the Bridge IC is through the SPI or I2C-bus
interface. The microcontroller acts as a master controlling the Bridge IC with the
embedded firmware code in the microcontroller ROM (Read Only Memory). The
microcontroller initiates the data transfer on the bus and controls the Bridge IC with
the chip select pin for SPI-bus interface. For the SPI-bus interface, these signals
(VCC, SS, MISO, MOSI, SCLK, GND, IRQ) have to be connected between the
microcontroller and the Bridge IC.

• NXP SC16IS752 Bridge IC
The Bridge IC acts as a slave interface convergence between the microcontroller and
UART peripherals. The Bridge IC handles the SPI or I2C-bus interface to the
microcontroller and the UART that consists of transmitter and receiver. The
transmitter sends the data received from the microcontroller to the UART peripherals.
The receiver sends the data received from the UART peripherals to the
microcontroller. In addition to the UART peripherals, the microcontroller can control
IrDA and GPIO peripherals.

The Transceivers are optional and can be intended for RS-232 or RS-485 communication
interface. The Transceivers consist of drivers and receivers. The drivers convert the
UART-logic output levels to RS-232 or RS-485 signals, whereas the receivers convert the
RS-232 or RS-485 signals to UART-logic input levels. If the UART-logic levels conversion
is not required, the Transceivers are optional.

Fig 2. SPI bus interface between LPC2148 and SC16IS752

002aac831

SCLK

SO

SI

CS

IRQ

SPI

SC16IS752

NXP
LPC2148

NXP
Bridge IC

ARM7-based
microcontroller

P0.4/SCK0

P0.5/MISO0

P0.6/MOSI0

P0.7/SSEL0

P0.14/EINT1
AN10587_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 23 February 2007 4 of 11

NXP Semiconductors AN10587
Interfacing NXP bridge IC with NXP ARM microcontroller
4. Software description

The programming of the Bridge IC can be done by writing firmware code, which requires
the following software:

• Keil is one of the embedded system vendors that provide the software development
tools for the NXP LPC2148 microcontroller. The software compiles the firmware code
written in ‘C’ and generates an ‘Intel Hex’ file. The software evaluation development
kit can be downloaded from the Keil web site.

• LPC2000 Flash Utility is a free Windows application software that allows easy
programming of the NXP LPC2148 microcontroller. The software loads the ‘Intel Hex’
file to the microcontroller by using its in-system programming mode communicating
through the serial port. The software can be downloaded from
http://www.nxp.com/products/microcontrollers/support/software_download/lpc2000/.

5. In-System Programming mode

NXP LPC2148 microcontroller has an on-chip Flash program memory with In-System
Programming (ISP), which allows the microcontroller to be programmed without removing
the microcontroller from the board and also the microcontroller, which previously
programmed can be reprogrammed without removal from the board.

The microcontroller must be powered-up in a special ‘ISP mode’ to perform the ISP
operation. The ISP mode allows the microcontroller to communicate with a host device
such as PC through a serial port. The host sends commands and data to the
microcontroller. The commands can be erase, read, and write. After the completion of the
ISP operation, the microcontroller is reconfigured and has to be reset or power cycled so
the microcontroller will operate normally.

The ISP programming for the device can be done using a Windows application software,
which uses an Intel Hex file as input to program it. For more information about the
software, please refer to Section 4 “Software description”.

6. Firmware description

The firmware code for the LPC2148 microcontroller is written in C language for SPI-bus
interface. It can be compiled by using an embedded C compiler. For more information
about the compiler, please refer to Section 4 “Software description”.

The firmware code consists of three major blocks, which are Main Loop, Interrupt Service
Routine, and Bus Interface layer described as follows.

6.1 Main Loop
The function of the Main Loop is to initialize the SPI port of the microcontroller (see
Table 1) and also to initialize the Bridge IC by writing a byte to the Bridge IC registers
(see Table 2). Inside the Main Loop, the microcontroller can select one of the two methods
for communicating to the Bridge IC. The first method is polling the Bridge IC status
register regularly. The second method is using an interrupt handler in the interrupt service
routine until the Bridge IC generates an interrupt. If using the interrupt handler, the
AN10587_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 23 February 2007 5 of 11

http://www.nxp.com/products/microcontrollers/support/software_download/lpc2000/

NXP Semiconductors AN10587
Interfacing NXP bridge IC with NXP ARM microcontroller
interrupt pins of the Bridge IC must be connected to the microcontroller and the interrupt
bits register must be enabled. The other function of the Main Loop is to keep checking the
event flags and pass to the appropriate subroutine for further processing.

Table 1. Initialize SPI port of the microcontroller

Void init_mcu_port (void)
{

// SPI port: P0.4=SCK0, P0.5=MISO0, P0.6=MOSI0, P0.7=SSEL0
PINSEL0 |= 0x20001500; // set SCK0, MISO0, SSEL0, EINT1

// Bit 29:28 = p0.14 => 10=EINT1
// Bit 15:8 = p0.4-7 => SPIO0 (SCLK, MISO, MOSI)

VICIntSelect |= 0x00008000; // enable a VIC Channel as FIQ
VICIntEnable |= 0x00008000; // enable EINT1

// Bit 17-14 = EINT3-0

VICDefVectAddr = (unsigned long) DefaultIRQ; // set Default interrupt vector

// GPIO direction
IO0DIR |= 0x000000D0; // set SCK0, MOSI0, SSEL0 as output and MISO0 as input

// Bit 29:28 = p0.14 (set EINT1 as input)
// Bit 15:8 = p0.7-4 (SSEL0, MOS10, MISO0, SCK0)

// GPIO setting
IO0SET |= 0x00000080; // set p0.7 (SSEL0) to high (disable SPI slave chip select)

// Control the rate of the APB clock in relation to the processor clock
VPBDIV = 0x1; // set APB clock to same as processor clock

// SPI Clock Counter Register to control the frequency of master’s clock
S0SPCCR = 0x6; // set SCLK (SPI clock)

// SPI Control Register to control the SPI operation
S0SPCR = 0x20; // set SPI mode 0 (CPHA=0, CPOL=0), master mode, MSB first

// set SPI interrupt enabled, 8 bits of SPI data per transfer
}

AN10587_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 23 February 2007 6 of 11

NXP Semiconductors AN10587
Interfacing NXP bridge IC with NXP ARM microcontroller

Table 2. Initialize SC16IS752 registers

Void SC16IS752_Init_ChA (void) // program channel A for SPI-UART
{ // set 115200 baud, 8N1

SPI_wr_752 (LCR, 0x80, 0); // 0x80 to program baud rate
SPI_wr_752 (DLL, 0x08, 0); // 0x08 = 115.2K with X1 = 14.7456 MHz
SPI_wr_752 (DLM, 0x00, 0); // divisor = 0x0008 for 115200 bps
SPI_wr_752 (LCR, 0xBF, 0); // access EFR register
SPI_wr_752 (EFR, 0X10, 0); // enable enhanced registers
SPI_wr_752 (LCR, 0x03, 0); // 8 data bit, 1 stop bit, no parity
SPI_wr_752 (FCR, 0x01, 0); // enable FIFO mode
SPI_wr_752 (SPR, 'A', 0); // scratch pad = character A (0x41)
SPI_wr_752 (IODIR, 0xFF, 0); // set GPIO [7:0] to output

// (default: 0x00=input)
SPI_wr_752 (IOSTATE, 0x00, 0); // set GPIO [7:0] to 0x00 (LEDs on)
SPI_wr_752 (IER, 0x01, 0); // enable Rx data ready interrupt

}

Void SC16IS752_Init_ChB (void) // program channel B for SPI-IrDA
{

SPI_wr_752 (LCR, 0x80, 2); // 0x80 to access program baud rate
SPI_wr_752 (DLL, 0x80, 2); // set IRDA to 2400 bps divider 0x0180
SPI_wr_752 (DLM, 0x01, 2); // program baud rate high byte
SPI_wr_752 (LCR, 0XBF, 2); // access EFR
SPI_wr_752 (EFR, 0X10, 2); // enable enhanced registers
SPI_wr_752 (LCR, 0x03, 2); // 8 data bit, 1 stop bit, no parity
SPI_wr_752 (FCR, 0x01, 2); // enable FIFO mode
SPI_wr_752 (SPR, 'B', 2); // scratch pad = character B (0x42)
SPI_wr_752 (EFCR, 0x00, 2); // IrDA SIR 115.2 Kbps
SPI_wr_752 (MCR, 0x40, 2); // enable IRDA mode
SPI_wr_752 (IER, 0x01, 2); // enable receive interrupt

}

AN10587_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 23 February 2007 7 of 11

NXP Semiconductors AN10587
Interfacing NXP bridge IC with NXP ARM microcontroller
6.2 Interrupt Service Routine (ISR)
The microcontroller uses the Interrupt Service Routine (ISR) to handle an interrupt
generated by the Bridge IC. As soon as the Bridge IC generates an interrupt, the ISR
checks the interrupt status of the Bridge IC to determine the interrupt sources and sets up
proper event flags to inform the Main Loop program for processing the interrupt request.

Table 3 shows the interrupt handler read the interrupt identity register to check the
interrupt sources such as receiver interrupt. If the receiver interrupt is detected, the
interrupt handler will read data from the receiver FIFO of the Bridge IC and store the data.

6.3 Bus Interface layer
The Bus Interface layer handles the SPI bus interface between the microcontroller and the
Bridge IC. The two functions in the bus interface layer are ‘Bus Interface Read’ and ‘Bus
Interface Write’.

6.3.1 Bus Interface Read
The microcontroller reads data from the SPI bus and stores the data for further
processing.

Table 3. Interrupt Service Routine (ISR)

Void FIQ_Handler (void) __fiq
{ // Interrupt Service Routine (ISR)

char ch;

// check interrupt channel B for SPI-IrDA
ch = SPI_rd_752 (IIR, 2); // read interrupt identity register
if (ch & 0x04) { // if receiver (RHR) interrupt

ch = SPI_rd_752 (SC16IS_RHR, 2); // read from RxFIFO chB
SPI_wr_752 (SC16IS_THR, ch, 0); // write to TxFIFO chA

} // end data ready

EXTINT = 0x00000002; // clear the peripheral interrupt flag
// Bit 3-0 = EINT3-0

}

Table 4. Bus Interface Read

BYTE SPI_rd_752 (BYTE reg, BYTE channel) // mcu read from SC16IS752
{

BYTE dataRead;
reg = (reg<<3) | 0x80; // register address byte
if (channel==0x02) reg |= channel; // channel address byte
SPICommand[0] = reg; // register address
IO0CLR |= 0x00000080; // P0.7 goes low; enable slave chip select
SPISend(SPICommand, 1); // 1-byte address is sent
SPIReceive(SPIDataRead, 1); // 1-byte data is read
dataRead = SPIDataRead[0]; // store the read data
IO0SET |= 0x00000080; // P0.7 goes high; disable slave chip select
return dataRead;

}

AN10587_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 23 February 2007 8 of 11

NXP Semiconductors AN10587
Interfacing NXP bridge IC with NXP ARM microcontroller
6.3.2 Bus Interface Write
The microcontroller writes data to the SPI bus for the Bridge IC to read.

7. Conclusion

The NXP Bridge IC provides easy interface to a host controller such as the NXP LPC2148
microcontroller, enables seamless and high-speed SPI or I2C-bus to RS-232 or RS-485
protocols convergence including GPIO for general-purpose input/output and IrDA for
wireless links, and offers low voltage operation, low power consumption, and compact
design which is suitable for battery-operated applications. In addition, the Bridge IC
reduces software overhead, frees up the host controller’s resources, increases design
flexibility, and improves overall system performance. For more details about the Bridge
ICs, please visit our web site at http://www.NXP.com/interface to download the
data sheets.

8. Abbreviations

Table 5. Bus Interface Write

Void SPI_wr_752 (BYTE reg, BYTE DataByte, BYTE channel) // mcu writes to SC16IS752
{

reg <<= 3; // register address byte
if (channel==0x02) reg |= channel; // channel address byte
SPIDataWrite[0] = reg; // register address
SPIDataWrite[1] = DataByte; // register data
IO0CLR |= 0x00000080; // P0.7/SSEL0=low; enable slave chip select
SPISend(SPIDataWrite, 2); // 2-byte data is sent
IO0SET |= 0x00000080; // P0.7/SSEL0=high; disable slave chip select

}

Table 6. Abbreviations
Acronym Description
FIFO First In, First Out

GPIO General Purpose Input/Output

I2C-bus Inter-Integrated Circuit bus

IC Integrated Circuit

IrDA Infrared Data Association

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver/Transmitter
AN10587_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 23 February 2007 9 of 11

http://www.NXP.com/interface

NXP Semiconductors AN10587
Interfacing NXP bridge IC with NXP ARM microcontroller
9. Legal information

9.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.

9.2 Disclaimers
General — Information in this document is believed to be accurate and
reliable. However, NXP Semiconductors does not give any representations or
warranties, expressed or implied, as to the accuracy or completeness of such
information and shall have no liability for the consequences of use of such
information.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in medical, military, aircraft,
space or life support equipment, nor in applications where failure or
malfunction of a NXP Semiconductors product can reasonably be expected to
result in personal injury, death or severe property or environmental damage.
NXP Semiconductors accepts no liability for inclusion and/or use of NXP
Semiconductors products in such equipment or applications and therefore
such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

9.3 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.

I2C-bus — logo is a trademark of NXP B.V.
AN10587_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 23 February 2007 10 of 11

NXP Semiconductors AN10587
Interfacing NXP bridge IC with NXP ARM microcontroller
10. Contents

1 Introduction . 3
2 Block diagram . 3
3 Hardware description . 4
4 Software description . 5
5 In-System Programming mode. 5
6 Firmware description . 5
6.1 Main Loop. 5
6.2 Interrupt Service Routine (ISR). 8
6.3 Bus Interface layer . 8
6.3.1 Bus Interface Read. 8
6.3.2 Bus Interface Write . 9
7 Conclusion . 9
8 Abbreviations. 9
9 Legal information. 10
9.1 Definitions. 10
9.2 Disclaimers . 10
9.3 Trademarks. 10
10 Contents . 11
© NXP B.V. 2007. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 23 February 2007
Document identifier: AN10587_1

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.

	1. Introduction
	2. Block diagram
	3. Hardware description
	4. Software description
	5. In-System Programming mode
	6. Firmware description
	6.1 Main Loop
	6.2 Interrupt Service Routine (ISR)
	6.3 Bus Interface layer
	6.3.1 Bus Interface Read
	6.3.2 Bus Interface Write

	7. Conclusion
	8. Abbreviations
	9. Legal information
	9.1 Definitions
	9.2 Disclaimers
	9.3 Trademarks

	10. Contents

