NXP Semiconductors Document Number: MCUBOOTELFTOSBGUIUG
User's Guide Rev 0, 10/2018

elftosb-gui User's Guide

h
P

Contents

Contents
L0 =T o (=T i O A =T = 3
Chapter 2 HOw 10 start............cooiimmmmmmmmmmmnnnnnsssssssssss s ssssssssss s 4
Chapter 3 K32W0x MCU platform........ccccuiminmnnnninsssssssssssssssssssssssssssssssssnsnnnnnes 5
3.1 Master boot IMAGE GENETALION.eii it e e e e e e e s re e e e e e e e enne e e sne e e eanreeennnnes 5
I O] (=T | (I o o] T TS PSSP P PP PR 8
Chapter 4 LPC55xx MCU platform.......ceecciiiiiiriiinnssssscssssssssss s ssssssssssssssssnns 9
4.1 Master DOt IMAGE GENETALION.ueiiiiiii ettt h et e b et e e a b e e e e st e e e sabe e e e st e e e aaneeesbeeeenbeeennnes 9
o S (o] (Yo (Y=o g =TT £ A SO PPPPPPRI 12
R IS T=Tod0 [4V oTo))il 0] = 1o o FAU PSSR 13
N O] (Y= | (YT o)] o) SO PUP R SOUPRPRN 14
Chapter 5 RT6xx MCU platform.......ccccoumememmmeesiininmmmmmmmmssssssssssssnnsssssssssses 15
5.1 Master boot IMaGE GENETATION.eii ittt e et e et e e s nn e e e s b e e e e nn e e s snneeeaneeenans 15
L (G S (o] (=T L1] SO OO OPRSURP 18
LRI O =T LI To o RO PSPPSRI 19
Chapter 6 Revision history........cccccumiminnnnnnnnsssssssssssssnnes 20
Chapter 7 Appendix A: Hex string key format...........ccccommmmmmmmmeensissnnnnnsnnnnnns 21

elftosb-gui User's Guide, Revision 0, October 2018
2 NXP Semiconductors

Chapter 1
Overview

The elftosb-gui is GUI tool with a main focus to help the user prepare a secure application image, as well as other useful security
operation specific to target MCU platform. Elftosb-gui tool provides intuitive graphical interface on top of elftosb and blhost
command-line applications and it guides user in preparation of secure boot images required by ROM bootloader.

Supported operation system are: Windows® oS, Linux® OS, and Apple Mac® OS. The following chapters provide information for
how to use elftosb-gui, as well as what you can do using elftosb-gui for supported devices.

elftosb-gui User's Guide, Revision 0, October 2018
NXP Semiconductors 3

How to start

Chapter 2
How to start

Unzip the elftosb-gui archive and start the application by executing one of the prepared scripts based on your operating system:
e elftosb-gui(darwin).sh
¢ elftosb-gui(linux).sh
e elftosb-gui(windows).cmd

After starting, the main application window appears:

efftosb-gui - O x
g
File About

Select target device:

K32Wix

ILPC550c
RT6uxx

Figure 1. Device family selection

Continue with the selection of targeting the MCU family, which opens the family-specific user interface.

elftosb-gui User's Guide, Revision 0, October 2018
4 NXP Semiconductors

Master boot image generation

Chapter 3
K32WO0x MCU platform

For the k32w0x MCU platform, the elftosb-gui offers a wizard for creating the master boot image.

3.1 Master boot image generation

The elftosb-gui allows user to create, modify or use an image configuration file. The tool can open an existing image configuration
file, or, create a new image configuration file and save it for later use. The image configuration file is a json text file and it is an
input required by elftosb command line tool for master boot image generation. The elftosb command line tool is available with the
elftosb-gui, thus, user can directly generate the master boot image from the GUI. Alternatively, if the user has the image
configuration file, the master boot image can be generated from command line (by calling elftosb) without involving the GUI.

) elftosh-gui — O e
File About
Select target device:
>
Image Process output
Image cenfiguration Verbose Export Clear
Load Mew Save Save As

File:

Figure 2. k32wO0x family main layout
Click the "Load" button to open an existing configuration, the "New" button for creating a new configuration, and "Save" or "Save
As" for saving the created or modified configuration.

During creation of the new image configuration, the user will be guided by elftosb-gui to successfully create the correct
configuration.

elftosb-gui User's Guide, Revision 0, October 2018
NXP Semiconductors 5

K32W0x MCU platform

If the configuration is finished, click the "Process" button to call the elftosb application to parse the configuration and create the

output image file. In case of missing configuration inputs, elftosb-gui marks problematic fields in red.

Image cenfiguration
Load New Save Save As
File: newFile

Input
*Image file: | |

Define output image format
Signature
*Specify 1 - 4 root certificates/certificate chains:

(® RootCertD: |,
() RootCert1: |,
() RootCert2: | .
() RootCert3: |,

“Key file: |,

Output
*Master Boot: | |

Private key for selected root certificate/certificate chain:

Process | Create script

i elftosb-gui - m} X
File About
Select target device:
K32W0x v
Image Process output
Export Clear

Verbose

Figure 3. Missing configuration inputs for k32w0x

To sign an application image with the tool, user shall include 1 to 4 root certificates. The root certificate can be alone in certificate
chain, but in this case the root certificate must be a self-signed nonCA certificate. The elftosb-gui supports certificate chains with
two certificates (root certificate and image signing certificate). In the case of two certificates in a chain, the root certificate must
be self-signed CA, and the second signed by a root certificate and is nonCA. For creating bigger certificate chains, it is necessary
to manually update the json image configuration file. For details, see Appendix D in the Kinetis Elftosb User's Guide (document

MBOOTELFTOSBUG).

elftosb-gui User's Guide, Revision 0, October 2018

NXP Semiconductors

Master boot image generation

Signature
*Specify 1 - 4 root certificates:
(® RootCertd: | ..s_and_certs/selfsign_v3.der.crt

ChainCertl: |
() RootCert1:
() RootCert2:
() RootCert3: |

Private key for selected certificate chain:

*Key file || ..selfsign_privatekey_rsa2(48.pem

Figure 4. Image signature configuration

All certificates are expected to be X.509 v3 certificates in DER format.

One of the specified certificate chains must be selected by the "Radio" button next to the RootCert specification. The selected
certificate chain is used for signature of an image, the other certificate chains are stored for later use.

The Key file must be included as a private key in PEM or DER format, which contains private key of the last certificate in the
selected certificate chain (the certificate which is used for signing of the image).

For signed images, elftosb-gui shows (in the output window) the RKTH value generated during the signature process by the elftosb
command line tool. RKTH is the hash value of hashes of provided root certificates. This value must be programmed to the target
device. The programming can be done by the blhost command line application. For more details, see the blhost User’s Guide
(document MCUBLHOSTUG).

If the new image is produced with different root certificates, the new image will not be accepted by the device due to different
RKTH values.

5., Output the root certificates SHAZ2LE hash (REETH) .
Success.
EETH: efabffed4574ed9865dT705123c5cf1933c1lad441lcdT4bec08d4931cf1£f019586436
10. Cutput the authenticated image.
Success. (Signed image .fwurkspacefDatput_imagesftEst_Datpat.bin created.)

Figure 5. RKTH value in the elftosb-gui output window

Output details can be limited by unchecking the 'Verbose' option in output area. The "Clear" button can also be used to remove
old output between runs.

elftosb-gui User's Guide, Revision 0, October 2018
NXP Semiconductors 7

K32W0x MCU platform

efftosb-gui - O x
g
File About

Select target device:

K32W0x ~
Image Process output
Image cenfiguration Verbose Export Clear
Load New T Save As Juccess. (LEerLTlIlcatlion Lotal sl1lZe = U pyLes) ~
4, Generate the entire image data.
File: ...agefworkspace/image_config/k3sExamplejson 4,1 Copy the original image data.
Input Success.
Flmage file:| | .rkspace/input_images/testfffffff.bin 4.2 Init certificate header.
Success.
Define output image format 4,3 hdd root cercificate.
Signature Success.
*Specify 1- 4 root certificates/certificate chains: 4.4 Rdd certificate.

Success. (Certification tabkle size = 1124)

(® RootCertD: | _|..s_and_certs/selfsign_v3.der.crt
4.5 Add root hash key table.

ChainCertl: | Success.
5. Load and parse the private key of certificate used for signing of output image.
ORuutCert‘I: " Success. (Private Hey File Path = ./workspace/keys and certs/selfsign privatekey rsa2048.p
() RootCert2: | . em
ORaotCertB: i} 6. Gener;z:’::;§jﬂ: image digest.
Private key for selected root certificate/certificate chain: SHA256 digest: Oxfa Oxf 0Ox11 0x57 Ox60 Oxba Oxd7 OxZb Ox5d Oxa€ Oxb2 0x20 0x52 Oxca O0x£f7 O

xee O0xTe Oxea OxSe 0x20 Oxec 0xc7 0x67 0Ox54 0Ox1% Oxc7 Ox€a 0 Ox2c 0Oxa%S 0x71 OxE6

7. Generate output image signature.

Output Success.

*Master Book: | _ | ...ace/output_images/test_ocutput.bin Signature: 0x8f Oxde 0xB81 Oxbf OxZe 0x83 0x&67 Oxc 0x39% Ox&6f 0x%1 Oxdf Ox€b Oxbé 0Oxb3 Oxfc
0x7d Ox56€ Ox4b Oxef Oxd0 Ox52 0Ox71 0Ox45 Ox€3 OxSc Oxbc 0x€4 Oxb Ox25 Oxd4 OxE9 0x13 Oxdé OxdE 0x&5
Oxae 0x58 0x65 Ox5c Oxdf Oxed Oxas Ox5a OxTa Ox8c Oxbd Oxeé Oxlc Oxcc Ox€a OrfE Oxrde Ox18 OxT9 Oxe
0 0xTd 0x7d 0xll Oxds Oxel Ox70 Oxd3 OxT78 Oxd® Oxaa Oxff Ox%c Ox50 Ox2d 0x9e Oxea 0x€ Oxcl O0x3b Ox
57 0xfl OxcZ Oxaf Oxbe Ox82 0x57 0x9%¢ Oxd Ox8b Ox€%9 Oxeb Ox84 Oxd3 Ox5d Oxbc Orec OxbZ Oxée 0xb7 0
xbc 0xd4 0x2c Oxcc 0x2 0x33 Oxc2Z 0xa% 0x4 OxT78 0x74 Oxef Oxfl Oxfb Ox11 0x34 Ox6d Ox55 0Ox4d 0x13 0
x22 Oxac 0x2& 0x57 Oxb€ Oxa% 0x7a OxT7c Oxce Ox€6 Oxfd Ox36 Ox2c Or7c Ox45 OrT Or9f Ox3d Ox9€ Ox9f
Oxla Ox86 0x74 Oxba Oxb5 Ox18 Oxle O0x45 Ox3e Ox3 Ox59 Ox93 Oxcé 0x3 Oxbd Ox2e 0xr47 0xcT 0x63 0x52
Oxaf Ox5c Oxac Ox8b Oxf9 Oxd7 Ox33 Oxcd Oxlf Ox4d Oxc4 Oxfc Oxac Oxe3 Ore€ Or55 Oxrbf OxbZ Oxd3 Oxl
2 0x24 0x3d 0xdE Ox2 Ox4c Ox44 Ox6e OxTLf Oxcd OxaZ Oxc4 Oxaf Oxcd Ox7b Oxcé 0Or35 Oxb3 0x2f 0x47 Ox
e5 Oxaé 0x73 Oxbb 0xSc Oxbc 0Ox2c 0x46 0x26 Oxfa Ox7 Ox3f Oxla Oxel Oxdb Oxce Oxab Ox60 Oxac Oxf8 0
x5k Ox%b 0xf7 0x81 Ox6c Ox8f Ox38 Oxd4 Ox€4 Oxac Ox28 Oxlb Ox21l Ox83 Oxc Oxrla Oxr55 Oxbf Oxd3 Oxls
Oxfe Ox15 Oxbl Oxcd Oxbc Oxe2 Oxed Ox4 Ox88 Oxaét Ox64 Oxf3 Ox71 Ox66 Ox91 OxS5b OxaT7 Oxdée Oxe Ox5d

*Keyfile: |, | ..selfsign_privatekey_rsa2048.pem

0x54 Oxba

8. Verify signature.
Success.

S. Output the root certificates SHA256 hash (RETH).
Success.

RKTH: efabffed4574edf9E65d705123c5cf1833cla44lcdT4be08d831cf1f018586436
10. Cutput the authenticated image.
Success. (Signed image ./workspace/output_images/test_output.bin created.)

Process Create script

Figure 6. Successfully created image

3.2 Create script

The elftosb-gui tool offers possibility to save output as a command line script for later use directly by command line elftosb
command line tool.

Use the "Create Script" button, next to "Process" button. If some mandatory input is missing, the field is marked in red.

The user will be prompted to specify the output file (script). The script is generated for the actual operating system (Windows,
Linux, MAC).

The script can be modified and used, for example, in process automation.

elftosb-gui User's Guide, Revision 0, October 2018
8 NXP Semiconductors

Master boot image generation

Chapter 4
LPC55xx MCU platform

For the Ipc55xx MCU platform, the elftosb-gui offers a wizard for creating the master boot image, key store initialization, and
security related configuration of the device.

4.1 Master boot image generation

The elftosb-gui allows user to create, modify or use an image configuration file. The tool can open an existing image configuration
file, or, create a new image configuration file and save it for later use. The image configuration file is a json text file and it is an
input required by elftosb command line tool for master boot image generation. The elftosb command line tool is available with the
elftosb-gui, thus, user can directly generate the master boot image from the GUI. Alternatively, if the user has the image
configuration file, the master boot image can be generated from command line (by calling elftosb) without involving the GUI.

efftosb-gui - O X
g
File About

Select target device:

v
Image Device Process cutput
Image configuration Verbose Export Clear
Load New Save Save As

File:

Figure 7. Ipc55xx family main layout

Use the "Load" button to open an existing configuration, "New" for creating a new configuration, or "Save" or "Save As" for saving
the created or modified configuration.

During creation of a new image configuration, the user is guided by elftosb-gui to successfully create the correct configuration.

If the configuration is finished, click the "Process" button to call the elftosb application to parse the configuration and create the
output image file. In case of missing configuration inputs, elftosb-gui marks the problematic fields in red.

elftosb-gui User's Guide, Revision 0, October 2018
NXP Semiconductors 9

LPC55xx MCU platform

Fa elftosh-gui — O x
File About

Select target device:

LPC35m0 ~

Process output

Image Device
Image cenfiguration Verbose Export Clear
Load New Save Save As
File: newFile
Input
*Image file: | |

*Load address: 0x [] Get from input image
p g

Define output image format
“Image execution target:

Internal flash (XIP) w

*Image authentication type:
TrustZone image type
(® TZ-M Enabled () TZ-M Disabled
Use preset data: |,,
Signature
*Specify 1 - 4 root certificates/certificate chains:
(® RootCertD: |,
() RootCert1: |,
() RootCert2: | .
() RootCert3: |,
Private key for selected root certificate/certificate chain:
“Key file: |,

Output
*Master Boot: | |

Process i Create script

Figure 8. Missing configuration inputs for Ipc55xx

The TrustZone-M preset configuration can be included as a binary file, which is directly copied into an output image. Alternatively,
the TrustZone-M preset configuration can be specified as Trustzone-M preset configuration file, in this case, the configuration file
is processed during the image creation process to produce the TZ-M preset binary data for the output image. For more information
about the TrustZone-M preset configuration file, see Appendix E in the Kinetis Elffosb User's Guide (document
MBOOTELFTOSBUG).

TrustZone image type
(@) TZ-M Enabled () TZ-M Disabled
Use preset data: |, ..._zone_config/lpciejson

Figure 9. TrustZone-M configuration detail

A signed image must be included with a minimum of 1 and maximum of 4 root certificates. The root certificate can be alone in
certificate chain. In this case, the root certificate must be a self-signed nonCA certificate. In elftosb-gui, is it possible to create a
certificate chain maximally with two certificates. In the case of two certificates in a chain, the root certificate must be self-signed
CA, and the second signed by a root certificate and is nonCA. For creating bigger certificate chains, it is necessary to manually
update the json image configuration file. For details, see Appendix D in the Kinetis Elftosb User's Guide (document
MBOOTELFTOSBUG).

elftosb-gui User's Guide, Revision 0, October 2018
10 NXP Semiconductors

Master boot image generation

Signature
*Specify 1 - 4 root certificates:
(® RootCertd: | ..s_and_certs/selfsign_v3.der.crt

ChainCertl: |
() RootCert1:
() RootCert2:
() RootCert3: |

Private key for selected certificate chain:

*Key file || ..selfsign_privatekey_rsa2(48.pem

Figure 10. Image signature configuration

All certificates are expected to be X.509 v3 certificates in DER format.

One of the specified certificate chains must be selected by the "Radio" button next to the RootCert specification. The selected
certificate chain is used for signature of an image, and the other certificate chains are stored for later use.

The Key file must be included as a private key in PEM or DER format, which contains private key of the last certificate in the
selected certificate chain (the certificate which is used for signing of the image).

For signed images, elftosb-gui shows (in the output window) the RKTH value generated during the signature process by the elftosb
command line tool. elftosb-gui shows (in the output window) the RKTH value generated during the signature process by the elftosb
command line tool. RKTH is the hash value of hashes of provided root certificates. This value must be uploaded for the first time
to the target device. Uploading is done by the blhost application. For more details, see the blhost User’s Guide (document
MCUBLHOSTUG).

If the new image is produced with different root certificates, the new image will not be accepted by the device due to different
RKTH values.

5., Output the root certificates SHAZ2LE hash (REETH) .
Success.
EETH: efabffed4574ed9865dT705123c5cf1933c1lad441lcdT4bec08d4931cf1£f019586436
10. Cutput the authenticated image.
Success. (Signed image .fwurkspacefDatput_imagesftEst_Datpat.bin created.)

Figure 11. RKTH value in the elftosb-gui output window

Output details can be limited by unchecking the 'Verbose' option in output area. The "Clear" button can also be used to remove
old output between runs.

elftosb-gui User's Guide, Revision 0, October 2018
NXP Semiconductors 1

LPC55xx MCU platform

Fa elftosh-gui — O x
File About
Select target device:
LPC55m0 ~
Image Device Process output
Image cenfiguration Verbose Export Clear
Load Mew Save Save As Y. Updacing llMage Oeader.) o
Success. (Image Type = 0x00002004, Image load address = 0x25a5fb25, Total Image size = 2%0
File: ..workspacefimage_config/IpciSmExamplejson 4 bytes)
Input 10. Init certificate header.
*Image file: | |..rkspace/input_images/testfffffff.bin Success.
10.1 Add root certificate.
*Load address: (x| 25a5fb25 Get from input image Success.
Define output image format 10.2 Add chained certificates from selected chain.
- . . Success. (Certification takle size = 1124 bytes)
mage execution target: o
10.3 Add root hash key table (RKTH).
Internal flash (XIP) ~ Success.
*Image authentication type: 11l. Add trust zone preset data.
Success.
12. Generate output image sha256 digest for image signature.
TrustZone image type Success.
@ TZ-M Enabled () TZ-M Disabled SHA256 digest: OxdS 0x37 0xf3 Ox4f 0x44 Oxad Oxea 0x5 Oxec Oxde Ox6b 0x28 0x70 0x40 0x31 0
2 T]] 7 8 a7 8 8 2
Usepresetdata: ..st_zone_output/tzFile.bin x6c Oxb2Z 0xT4 Oxbd O)Zuf! Oxsé Oxel OxT7c 0xB4 0xS7 0x18 Oxf9 Oxd3 Oxe2 Oxdf Ox31 Oxa3
" 13. Generate output image signature.
Signature Success.
*Specify 1- 4 root certificates/certificate chains: Signature: Oxb2 Oxda Ox6b Oxdé 0x24 OxcZ 0x7 Oxll O0xS1 Ox7 Ox3a 0x7d Oxb2 O0x58 O0x3f Oxc Ox
2 2 8 2 5 ag 8 -
) RootCertd: | | s_and_certs/selfsign_v3.der.crt 4b 0x15 0x12 Oxdf Oxef 0OxaZ Oxel 0x6d 0x4& 0x2 Oxfe 0x55 OxSe 0xZ8 Oxeb 0xf3 Ox8c Oxb7 Oxfd Oxd4e O
%57 Oxdc Oxfa O0x75 0Oxb4 0x31 Oxc Oxbf 0x32 0Ox53 OxZc Oxlc 0x52 Oxed Ox953 Oxée Ox9e Oxed Oxed Oxcd
ChainCertl: | | OxbE& Oxcd4 Oxae OxcS% Ox%c Oxbl 0x70 Ox1f Ox84 Oxee Oxd4 Oxd2 0x19 Oxdl Ox5 OxcS5 0x9 0Ox&3 0x&7 0x25
® RootCert] < and certs/selfsign va.der.crt 0xc4 OxaZz Oxae 0xS2 0x81 Oxca Oxlc 0x97 Ox6€5 OxfS OxS5a Oxd3 Oxlc Oxa7 0x49 0xEBe 0xld Oxfe 0x39 Oxe
|| / .der.
aotieth 8 . gn- 3 Oxel 0xTe Oxad Oxdl OxcO Ox5¢ Oxcd Ox4b Ox95 Ox38 Ox9 Ox89 Oxl€é Ox3€ Oxbf Oxrel Ox4 Oxd7 Ox29 Ox3
ChainCert1: | | f Oxfs Ox5d Oxbl Ox45 0x20 0x72 0xd2 Oxf% Oxde Oxfé Oxa4 Oxf3 Oxb4 OxeS Ox25 Oxde Oxds OxE6 OxL0 O
x4c OxcO 0x30 Ox6e Ox2d Ox6c Oxas 0x49 Oxba OxT9 Oxc Ox2a OxcO Ox57 Orf3 0xl3 Oxrdd Oxfeé 0OxlZ 0x30
O RootCert2: |, Ox6f Ox56 Oxce Oxda Ox29 OXE7 Ox4a Oxfs Oxf7 Oxe5 OxShb Ox4l Oxf2 Oxad OX78 Ox4f Ox7f Oxl4 OxSc Oxd
) RootCert3: Ox4 0x77 Ox8a 0x28 Ox9c Oxd7 Oxdé Oxl Oxlf 0x37 0x57 Ox19 0x6€9 O Ox86 Oxdd Ox29 0x50 OxSe 0xl7 Oxb
i . - i T Oxfa Oxe3 0x26 Ox37 Ox88 Ox73 Ox82 OxTd Oxl9 Oxdc Ox5 Ox77 Oxbe 0xl3 0x92 Oxrdb 0x%6 Ox4f Ox8a Ox
Private key for selected root certificate/ certificate chain: dl Ox2 Oxbf Ox65 O0x6€3 Ox82 Ox59 Oxad Oxe4 Ox31 Ox83 0x38 Oxcl Oxae OxbS 0x35 Oxad Ox4l Oxb9 0x35 O
ey filer| | .selfsign_privatekey rsa .pem ®29 Ox xoa Oxc ®2Zc OxEa Ox XBE 0x18 Oxd xec Oxa 2 0x28 Oxls Ox ®4Z 0Ox! xdd Oxa
*Key fil |f teks 2048, 29 0x36 0. 0xcS 0x2c Ox6a Oxd4 OxEB Ox1E 0Ox64 Ox6c Oxal Oxb2 Ox28 Oxle Oxde 0x42 O0x51 Oxdd Oxad
0x62
Output 14. Verify signature.
*Master Boot: || ...ace/output_images/test_output.bin Success.
15. Cutput the root certificates S5HA256 hash (RETH).
Success.
RETH: 29429de643e08021adf444a5aa45c31390e761b8f5d8dalcTad4e199c2207dbS
16. Creating output image file.
Success.
16.1 Writing output image to file.
Success. (Signed image ./workspace/output images/test output.bin created.)
Process Create script - - @

Figure 12. Successfully created image

4.2 Key store creation assist

Key store is a binary data structure that holds keys. This application can assist in creating key store with keys that are being used
by the boot ROM. The initialization is done by the command line blhost tool. Elftosb-gui offers to do it more easily than command
line.

The user needs to ensure that the targeting device is connected to the host PC and is in a state where it is able interact with
blhost. For more details, see the blhost User's Guide (document MCUBLHOSTUG) and the device manual.

The user needs switch to the Device tab, define the connection to device (more details about connection in the blhost User's
Guide (document MCUBLHOSTUG)), select the Key Store tab, specify which keys upload/generate, and specify how to save Key
Store generated in the device RAM. Once the is configuration ready, click the "Process" button. In case of missing mandatory
user input, the field is marked in red. If all inputs are provided, in output area displays the interaction with the blhost application.

elftosb-gui User's Guide, Revision 0, October 2018
12 NXP Semiconductors

Security configuration

efftosb-gui - O x
g
File About

Select target device:

LPC35m¢ ~
Image Device Process output
Device configuration Verbose Export Clear
g:::‘:c@'; v (2018-07-18 16:18:12) >> \blhostiwindows\blhost.exe -V -u 0x15a2,0x73 -- key-provisioning enroll
Error: UsbHidPeripheral() cannot open USB HID device (vid=0xlS5a2, pid=0x0073, sn=).
*VID: Ox| 1522 (2018-07-18 16:18:12) >> .\blhostiwindows\blhost.exe -V -u 0x15a2,0x73 -- key-provisioning set_user_key 3 .\templte
*PID: 0x| 73 mpSbhkek.bin
BusPal Error: UsbHidPeripheral() cannot open USB HID device (vid=0xlS5a2, pid=0x0073, sn=).
[BusPal (2018-07-18 16:18:12) >> .\blhostiwindows\blhost.exe -V -u 0x15a2,0x73 -- key-provisioning set_key 7 16
Error: UsbHidPeripheral() cannot open USB HID device (vid=0xl5a2, pid=0x0073, sn=).
Key Store Security (2018-07-18 16:18:13) >> .\blhostiwindows\blhost.exe -V -u 0x15a2,0x73 -- key-provisioning set_key 7 16
Key Store Error: UskHidPeripheral() cannot open USB HID device (vid=0xlSa2, pid=0x0073, sn=).
SRAM PUF Enroll (2018-07-18 16:18:13) >> .\blhostiwindows\blhost.exe -V -u 0x15a2,0x73 -- key-provisioning set_key 7 16
Enroll Error: UsbHidPeripheral() cannot open USB HID device (vid=0xl5a2, pid=0x0073, sn=).
Keys (2018-07-18 16:18:13) >> .\blhostiwindows\blhost.exe -V -u 0x15a2,0x73 -- key-provisioning set_key 12 32
)SBKEK Error: UsbHidPeripheral() cannot open USB HID device (vid=0Ox15a2, pid=0x0073, sn=).

(2018-07-18 16:18:13) >> .\blhostiwindows\blhost.exe -V -u 0x15a2,0x73 -- key-provisioning write_key_ncnvolatile 0
Error: UsbHidPeripheral() cannot open USB HID device (vid=0xlS5a2, pid=0x0073, sn=).

PRINCE region 0 key (2018-07-18 16:18:13) >> .\blhostiwindows\blhost.exe -V -u 0x15a2,0x73 -- key-provisioning read_key_store C:Work/
PRINCE region 1 key GIT/mcu-mkimage/workspace/key_store/key_store_lpc55xx.bin

Error: UskHidPeripheral() cannot open USB HID device (vid=0xlSa2, pid=0x0073, sn=).

*SBKEK file: | , ...efworkspace/keys/sbkek.bxt

PRINCE region 2 key
ups
Export
To nonvolatile device memaory (internal/QSPI flash):
*Memaory ID: EI
To host computer for later use:
*Export file: | |..efkey store/key store_lpciSwcbin

Process Create script

Figure 13. Key Store intialization of Ipc55xx

The provided sbkek file is expected in hex string format. PRINCE and UDS keys are generated by the device itself (using PUF).

The generated Key Store can be exported from RAM to non-volatile memory in the device, or can be downloaded to the host PC
and stored in binary format.

4.3 Security configuration

Elftosb-gui offers a security configuration for the Ipc55xx MCU platform. The configuration is stored in the flash memory of the
device and is accessible by blocks. For a security configuration, read-modify-write sequence is executed on the memory block
with the security configuration. The elftosb-gui uses the blhost to get the memory block from the device and uploads it back with
a new configuration. Only security registers in the memory block are modified, other device configuration registers on the page
stay untouched.

The user needs to select the Device tab, define the connection to the device (more details about connection in the blhost User's
Guide (document MCUBLHOSTUG), switch to the Security tab inside the Device tab, and specify the security configuration.

Once the security specification is done, click the "Process" button so the configuration is uploaded to the device. The user has to
ensure that device is connected and ready to communicate with the blhost application. Follow the output window to check the
progress and results of the upload.

elftosb-gui User's Guide, Revision 0, October 2018
NXP Semiconductors 13

LPC55xx MCU platform

| File About

| Select target device:

| [LPCa50c ~

Image Device Process output
Device configuration Verbose Export Clear

C 1

ennecten (2018-07-18 16:21:07) >> \blhostiwindows\blhost.exe -V -u 0x15a2,0x73 — read-memory 0x9E400 512 \tempisecConf

(O UART ® USB Orig.bin

VID: Ox| 1582 Error: UsbHidPeripheral() cannot open USB HID dewvice (vid=0x15a2, pid=0x0073, sn=).

*PID: 0x| 73 (2018-07-18 16:21:10) >> .\blhostiwindows\blhost.exe -V -u 0x15a2,0x73 -- write-memory 0x9E400 .\temp\secConfMod

BusPal .bin

[BusPal Error: UsbHidPeripheral() cannot open USB HID device (vid=0x15a2, pid=0x0073, sn=).

Key Store Security
| Security

Secure Bth:‘Eoot plain images hd
Watch Dog: | Disabled w

| Lock device on boot fail

Disable sensitive ISP commands

Disable PUF enrollment

Disable PUF key code generation

TZ-M mnde:|Frum\magehEader V|

[] Disable DICE calculation

Custemer factory area (with keys) in DICE calcuation

[[] MXP area in DICE calculation

[] Accept RSA4D96 keys only

RKTH:

|021 adf444a5aa43c31390e761b8f3d8dal cTad4e199c2207dbS

[] 11Seal security configuration!!

Process Create script

Figure 14. Security configuration of Ipc55xx

If the RKTH entry is empty, the RKTH value in the security configuration memory block is not modified (it keeps the read value).

The !1Seal Security Configuration!! option adds SHA256 hash to the end of the security configuration memory page, and the
content of the page locks for any other modification.

4.4 Create script

The elftosb-gui tool offers possibility to save output as a command line script for later use directly by command line elftosb
command line tool.

Use the "Create Script" button, next to "Process" button, on each operation for the Ipc55xx device family in mkimage. If some
mandatory input is missing, the field is marked in red.

The user will be prompted to specify the output file (script). The script is generated for the actual operating system (Windows,
Linux, MAC).

The script can be modified and used, for example, in process automation.

elftosb-gui User's Guide, Revision 0, October 2018
14 NXP Semiconductors

Master boot image generation

Chapter 5
RT6xx MCU platform

For the rtéxx MCU platform, the elftosb-gui offers a wizard for creating a master boot image and Key Store initialization of the
device.

5.1 Master boot image generation

The elftosb-gui allows user to create, modify or use an image configuration file. The tool can open an existing image configuration
file, or, create a new image configuration file and save it for later use. The image configuration file is a json text file and it is an
input required by elftosb command line tool for master boot image generation. The elftosb command line tool is available with the
elftosb-gui, thus, user can directly generate the master boot image from the GUI. Alternatively, if the user has the image
configuration file, the master boot image can be generated from command line (by calling elftosb) without involving the GUI.

elftosb-gui - O X
File About
Select target device:
v
Image Device Process cutput
Image configuration Verbose Export Clear

Load New Save Save As

File:

Figure 15. rt6xx family main layout

Click the "Load" button to open an existing configuration, the "New" button for creating a new configuration, and "Save" or "Save
As" for saving the created or modified configuration.

During creation of the new image configuration, the user will be guided by elftosb-gui to successfully create the correct
configuration.

elftosb-gui User's Guide, Revision 0, October 2018
NXP Semiconductors 15

RT6xx MCU platform

If the configuration is finished, click the "Process" button to call the elftosb application to parse the configuration and create the
output image file. In case of missing configuration inputs, elftosb-gui marks problematic fields in red.

i elftosb-gui - m} X
File About

Select target device:

RT&ux v

Process output

Image Device
Image cenfiguration Verbose Export Clear
Load Mew Save Save As
File: newFile
Input
“Image file: | |

*Load address: Dxl:l [] Get from input image

Define output image format
*Image execution target:

*Image authentication type:
Encrypted + Signed ks
*Encryption/HMAC key (USERKEY): |,
TrustZone image type
() TZ-M Enabled (®) TZ-M Disabled
Key Store
® MNone () Reserve space only (O Attach file
Signature
*Specify 1 - 4 root certificates/certificate chains:
® RootCertl: | .
() RootCert1: |,
(O RootCert2: |,
() RootCert3: |
Private key for selected root certificate/certificate chain:
“Key file: |,

Output
*Master Boot: | |

Process i Create script

Figure 16. Missing configuration inputs for rt6xx

Images configured to be executed in RAM with signature require specifying the AES-256 used for HMAC key calculation and
image encryption. The key is expected in hex string format. This key is also known as USERKEY, and must be uploaded to the
device before loading the image. See the next chapter about Key Store initialization for more information.

Figure 17. Encryption/HMAC key (USERKEY)

*Image execution target:
[RAM]

*Image authentication type:

|Er|cr_l,-'pted + Signed V|

*Encryption/HMAC key (USERKEY): |

o keys/userkey. bt

The next option available is only for images with execution in RAM and signature possibility includes Key Store to the image. This
feature can go unused, and only the Key Store space with zeros in the output image structure can be reserved for further
replacement, or the Key Store file can be included. The file is expected in binary format. See the next chapter about Key Store
initialization and how to get it from the device.

Figure 18. Including Key Store to the image

elftosb-gui User's Guide, Revision 0, October 2018
16 NXP Semiconductors

Master boot image generation

Key Store
() Mone () Reserve space only (®) Attach file

Key store file: | ! ../key_store_Ipcnext0(lpcdld).bin

In case there is only Key Store reservation after processing, check the output area to find the position and size of the reserved
Key Store in the output image.

Figure 19. Key Store location in image

8.1 EReserve key store space only.
Eey store with size 1424 bytes will be reserved in image from address: 0xe0.
Success.

The TrustZone-M preset configuration can be included as a binary file, which is directly copied into the output image or,
alternatively, as a json TrustZone-M preset configuration file, and is processed during image creation with binary data included
in the output image. For more information about TrustZone-M preset configuration file, see Appendex E of the Elftosb User's
Guide (document MBOOTELFTOSBUG).

A signed image must be included with a minimum of 1 and maximum of 4 root certificates. The root certificate can be alone in
certificate chain, in such case the root certificate must be a self-signed nonCA certificate. In elftosb-gui, is it possible to create a
certificate chain maximally with two certificates. In the case of two certificates in a chain, the root certificate must be self-signed
CA, and the second signed by a root certificate and is nonCA. For creating bigger certificate chains, it is necessary to manually
update the json image configuration file. For details, see Appendix D in the Kinetis Elftosb User's Guide (document
MBOOTELFTOSBUG).

Figure 20. Image signature configuration

Signature
*Specify 1 - 4 root certificates:
(® RootCertd: | ..s_and_certs/selfsign_v3.der.crt

ChainCertl: |
() RootCert1:
() RootCert2:
i) RootCert3:

Private key for selected certificate chain:

*Key file: || ..selfsign_privatekey_rsa2(048.pem

All certificates are expected as X.509 v3 certificates in DER format.

One of the specified certificate chains must be selected by using the "Radio" button next to the RootCert specification. The selected
certificate chain is used for the signature of image, and other certificate chains are stored for later use.

The key file shall point to a private key in a PEM or DER format. This is the private key that corresponds to image signing certificate
public key in the last certificate in the selected certificate chain.

For signed images, elftosb shows RKTH value in the mkimage output window. RKTH is hash value of hashes for provided root
certificates. This value must be uploaded the first time to the target device. The upload is done by the blhost application. For more
details, see the blhost User's Guide (document MCUBLHOSTUG).

If the new image is produced with different root certificates, the new image is not accepted by the device due to different RKTH
values.

Figure 21. RKTH value in elftosb-gui output window

elftosb-gui User's Guide, Revision 0, October 2018
NXP Semiconductors 17

RT6xx MCU platform

1, Cutput the certificate SHA2S56 hash.
Success.
RETH SHAZ2S56 HASH: efabffed4574edS865d705123c5cf1933c1a441cd74bc08d931cE1f015586436
Success. (authenticated image file: C:/Work/Python/mkimage verlOl/workspace/output_images/te

The output details can be limited by unchecking the Verbose option in output area. The "Clear" button can be used to remove old
output between runs.

@ elftosh-gui — O x
File About

Select target device:

RT6cc v

Process cutput

Image Device

Image configuration Verbose Export Clear
Load Mew Save Save As SECCESs. . ~
13.1 Add root certificate.
File: ...e/workspace/image_config/rtheExample,json Success.
Input 13.2 Add chained certificates from selected chain.

*Image file: || .rkspacefinput_images/testffffif.bin Success. (Certification table size = 1124 bytes)
13.3 Add root hash key table (RKTH).

“Load address: Ox|25a5fb25 Get from input image Success.

Define output image format 14. Add trust zone preset data.
- . Success.
Image execution target: ~ A _ R R
5. Generate output image sha256 digest for image signature.

*Image authentication type: SHAZS56€ digest: Oxa Oxcc 0x7d Oxbb O0x36 Oxfb Ox32 OxcO Ox32 Ox%a Orff Oxaé Oxbd Oxéb O0xSb 0

- xT78 Oxfc Oxcl OxEf Ox44 Ox65 OxBe Oxaf Ox31 Ox25 Oxed Ox36 Oxae Ox31 Oxca Oxrfb Oxrde

1l6. Generate output image signature.

*Encryption/HMAC key (USERKEY) = Success.

Signature: 0x72 0xl4 0Ox3a 0Ox93 0x98 Ox8k 0Ox99 Ox6a 0x3 Oxea Oxat 0x43 Oxd4 Oxa3 0Ox80 0x20

OxZa Ox%e Ox7e 0x9f Ox90 Oxfa Ox4l Oxf4 Oxfb OxcY Oxcd Ox73 Ordf OxlS Oxl8 Oxrba O0r43 Ox39 Ox3l Oxe

® TZ-MEnabled O TZ-M Disabled 4 0x12 Oxee OxcY OxSc OS2 Ox6 OXTL OX55 Oxc3 Oxa8 0x66 Oxad Oxl3 Oxac Ox2a Ox3e Oxel 0x95 Oxb4 Ox

[#] Use preset data: ,, | ...config/example_rtfioc.json da Oxb0 Oxac 0xfé 0xa8 0x35 Oxfa Oxf5 0x12z Oxbc 0x6 0x90 Oxab Oxdl 0x50 0Ox5a 0x40 Oxcc 0x15 0x4f 0
x65 0x82 Oxlc Oxfe 0x44 0x68 0x591 Ox64 Ox3a Ox32 Oxlc Oxbb Ox44 Ox25 OxBc 0xB2 0x42 Oxee Ox44 O0xTc

=

TrustZone image type

ey e Ox%e Ox72 Oxal Oxff Ox49 Oxeé Oxf OxB8a Oxf5 Ox5b Oxef 0x95 Oxb7 OxaS Ox1f 0x5 Ox5b 0x57 Ox4d Oxch
O None O Reserve space only @ Attach file Oxdl Oxe7 Oxa4 Oxcd Ox88 OxSd Ox43 Ox63 Oxaf Ox6l Ox24 Ox2 Oxdc Oxda OxcB Ox38 Ox40 Oxa8 Oxcd Oxbé
Key storefile: | ...ce/key_store/key_store_rtbx.bin Ox62 Ox16é Ox5d OxSb Oxed O0x16 0x97 Oxd0 0x44 0x34 0x55 Oxed4 0x36 OxSb 0x68 OxcB 0x25 Oxf0 Ox6f Ox8
c 0x15 Oxb5 Oxbl Ox8a Oxd3 Oxfe 0xd8 Oxfb Oxfl Oxb7 Oxd5 0x67 Ox6b Ox4 Oxbf Oxe0 Ox8f Ox58 O0xf3 Ox
SEnEE 53 Ox63 Ox3c Ox5 Ox77 OxSb Oxfe 0x8% Ox& Ox6d Oxd2 Ox3a Ox40 0x32 Oxéc Oxf Ox3% Oxeé O0x21 0x37 Oxb
“Specify 1- 4 root certificates/certificate chains: 3 0x81 Oxcd Ox57 0x71 Oxe7 Oxad Ox29% 0xf2 O0x32 Oxal 0x7 Oxde O0x33 Ox6d Oxad Oxad Ox42 Ox1é Oxl Ox5
() RootCertD: | | ...s_and_certs/selfsign_v3.der.crt 4 0x4% Oxbb 0x75 Oxed4 Ox3f Oxf9 Oxaa Oxc7 Oxdé Oxd Oxf% Ox47 OxeS Oxdb 0x8d 0xb7 OxSc Oxaa 0xf2 Ox
. 25 0x&5 0x34 0x51 OxSc 0xa7 0xf3 0x2d 0x3f Oxl4 Oxef Oxd® Oxb2 Ox35 Ox3c 0x5 OxE8b Oxlb Oxb7 Oxd Ox
ChainCert(:
- 3b 0xf0
® RootCert1: |, |..s_and_certs/selfsign_v3.der.crt 17. Verify signature.
: Success.
ChainCert: | 18, Calculate HMAC of output image header using ./workspace/keys/sbkek.txt kev.
ORDotCert?_: . Image Header MAC: OxS5c 0xd7 0x40 Oxf3 OxaT7 O0x65 0x7c OxS54 Oxac Oxld 0xk3 Oxékb Oxa2 Oxeb Ox
da Ox2d O0xld 0x7a Oxf3 Oxfd Ox4f Ox3a Oxdf Ox2c Oxchk Oxab Oxb2 0x73 Oxad Ox1f Oxraf 0Ox17
() RootCert3: |, Succeas.
Private key for selected root certificate/certificate chain: 19. U‘Atp;iczzzsroat certificates SHA256 hash (RKTH).

q .
(AL e Hp el e e RKTH: 29429de643e08021adf444a5aa45c31390e761bsE5dsdalcTaddelg9c2207dba

Output 20. Creating output image file.
*Master Boot: |, | ..ace/output_images/test_output.bin - _SI?CCESS' N N
20.1 Writing output image to file.
X Success. (Signed image ./workspace/output images/test output.bin created.)
Process Create script - - v

Figure 22. Successfully created image for rt6xx

5.2 Key Store assist

Key store is a binary data structure that holds keys. This application can assist in creating key store with keys that are being used
by the boot ROM. The initialization is done by the command line blhost tool. Elftosb-gui offers to do it more easily than command
line.

The user needs to ensure that the targeting device is connected to the host PC and is in a state where it is able interact with
blhost. For more details, see the blhost User's Guide (document MCUBLHOSTUG) and the device manual.

The user needs switch to the Device tab, define the connection to device (more details about connection in the blhost User's
Guide (document MCUBLHOSTUG)), select the Key Store tab, specify which keys upload/generate, and specify how to save Key
Store generated in the device RAM. Once the is configuration ready, click the "Process" button. In case of missing mandatory
user input, the field is marked in red. If all inputs are provided, in output area displays the interaction with the blhost application.

elftosb-gui User's Guide, Revision 0, October 2018
18 NXP Semiconductors

Create script

efftosb-gui - O x
g
File About

Select target device:

R ~
Image Device Process output
Device configuration Verbose Export Clear
Connection (2018-08-01 11:02:58) >> \blhostiwindows\blhost.exe -V -u 0x15a2,0x73 -b can,4,0x321,0x123 — key-provisioning enr
(O UART ® USB oll
“VID: Ox| 15a2 Error: UsbHidPeripheral() cannot open USB HID device (vid=0x15a2, pid=0x0073, sn=).
*PID: 0x| 73 (2018-08-01 11:02:59) >> .\blhostiwindows\blhost.exe -V -u 0x15a2,0x73 -b can,4,0x321,0x123 -- key-provisioning set
BusPal _user_key 11 MempitempUserkek.bin
BusPal Error: UsbHidPeripheral() cannot open USB HID device (vid=0x15a2, pid=0x0073, sn=).
O) 126 O 591 @ CAN (2018-08-01 11:02:59) >> .\blhostiwindows\blhost.exe -V -u 0x15a2,0x73 -b can,4,0x321,0x123 -- key-provisioning set
_user_key 3 temp\tempSbkek.bin
*Speed‘ Error: UsbHidPeripheral() cannot open USB HID device (vid=0x13a2, pid=0x0073, sn=).
“Txld: Dx (2018-08-01 11:02:59) >> .\blhostiwindows\blhost.exe -V -u 0x15a2,0x73 -b can,4,0x321,0x123 -- key-provisioning set
*“Ralcls Dx _user_key 2 \temp\tempOtfadkek.bin
Error: UsbHidPeripheral() cannot open USB HID device (vid=0xlS5a2, pid=0x0073, sn=).
Key Store (2018-08-01 11:02:59) >> .\blhostiwindows\blhost.exe -V -u 0x15a2,0x73 -b can.4,0x321,0x123 - key-provisioning writ
Key Store e_key_nonvolatile 0
SRAM PUF Enroll Error: UsbHidPeripheral() cannot open USB HID device (vid=0xl15a2, pid=0x0073, sn=).
Enroll (2018-08-01 11:03:00) >> .\blhostiwindows\blhost.exe -V -u 0x15a2,0x73 -b can,4,0x321,0x123 -- key-provisioning rea
Keys d_key_store C:/Werk/GIT/meu-mkimage/workspace/key_steore/key_store_rtéxx.bin
USERKEY Error: UskHidPeripheral() cannot open USB HID device (vid=0xlSa2, pid=0x0073, sn=).

"USERKEK file: | | ..workspace/keys/userkey bt
SBKEK

*SBKEK file: |, ..image/workspace/keys/sbkek.bd
OTFAD_KEK

*OTFAD_KEK file:| | ...rkspace/keys/otfadkek.bd
[ups

Export
To nonvolatile device memaory (internal/QSPI flash):
*Memaory ID: EI
To host computer for later use:

*Export file: | | .. key_store/key_store_rtocbin

Process Create script

Figure 23. Key Store initialization of rt6xx

The provided key files are expected in hex string format. The UDS key is generated by the device itself (using PUF).

The generated Key Store can be exported from RAM to non-volatile memory in the device, or can be downloaded to host PC and
stored in binary format.

5.3 Create script

The elftosb-gui tool offers possibility to save output as a command line script for later use directly by command line elftosb
command line tool.

Use the "Create Script" button, next to "Process" button, on each operation in mkimage. If some mandatory input is missing, the
field is marked in red.

The user will be prompted to specify the output file (script). The script is generated for the actual operating system (Windows,
Linux, MAC).

The script can be modified and used, for example, in process automation.

elftosb-gui User's Guide, Revision 0, October 2018
NXP Semiconductors 19

Revision history

Chapter 6
Revision history

This is the first revision of the document.

elftosb-gui User's Guide, Revision 0, October 2018

20

NXP Semiconductors

Chapter 7
Appendix A: Hex string key format

The hex string key is an uninterrupted string of hexadecimal characters.
* AES-128 bit key example in hex string format (32 hexadecimal characters):
3F3CFBC001F399991035C3C6C7065924
* AES-256 bit key example in hex string format (64 hexadecimal characters):

338D3E817A337A48BA3C46486571789B3CEEC831D1D93E635D186A75A33B7A7E

elftosb-gui User's Guide, Revision 0, October 2018

NXP Semiconductors

21

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

arm

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, All other
product or service names are the property of their respective owners. ARM, AMBA, ARM
Powered, are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or
elsewhere. All rights reserved.

© 2018 NXP B.V.

h
P

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	elftosb-gui User's Guide
	Contents
	1 Overview
	2 How to start
	3 K32W0x MCU platform
	3.1 Master boot image generation
	3.2 Create script

	4 LPC55xx MCU platform
	4.1 Master boot image generation
	4.2 Key store creation assist
	4.3 Security configuration
	4.4 Create script

	5 RT6xx MCU platform
	5.1 Master boot image generation
	5.2 Key Store assist
	5.3 Create script

	6 Revision history
	7 Appendix A: Hex string key format

