Micripm

Copyright 2012 ©, All Rights Reserved

uC/0S-II

Kernel Awareness

WWW.micrium.com

Table of Contents

1.0

2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

3.0
3.01
3.02
3.03
3.04
3.05
3.06
3.07
3.08
3.09
3.10

4.0

5.0
5.01

INEFOAUCTION .ttt ettt et e st st sttt et e bt e s beesaeesateeabeebeenbeesbeesanenas 5
GENEIAL STALUS ...ttt ettt et e s bt e e st e s bt e e bee e sabeesbeeesabeesabeeesabeesabeesneeesareeanns 6
OSRUNNING KBOOLEANS ...ttt ettt e e e s ettt e e e e e s s ebab e e e e e e eessaaabrbeeeeeeesesannrnee 6
OSCPUUSAEE KINT8BU ... e s e e s eaasasasaaanenns 6
OSTASKCEE KINTBUS ...ttt ettt ettt st st et e e sb e e she e sat e sate et e e b e e beenbeesmeesaeeennenn 6
OSIAIECEr KINT32U ..ttt ettt ettt sbe e st s bt et esbe e sbe e sat e s st e bt e b e e beenbeesmeesaeeenrean 6
OSCIXSWCEN KINT32U> ..ottt re e s s sra e e s sarae s 7
OSTMITIME KINT32US ...ttt ettt e e e st e e s s b e e e s s abe e e s eareeesesnneeessnnnenas 7
OSTMIUSEA KINTLOUS ...ttt ettt ettt sttt e st e e st e e st e e sbteesabeessbbeesabeesneeesabeeanns 7
OSTMIFrEee KINTLOUS ...ttt ettt ettt e e e st e e s s e e s e sabe e e s eareee s snbeeesenneeas 7
OSVersioNNUMbBEr KINTLBUSoouiiiiiiiiiieieeee ettt sttt ettt st st sttt sbe e saee s e e es 7
OSININESEING KINTBUD ..o eaeeeas 7
OSLOCKNESEING KINTBU ...ooiiiiieee ettt e e tee e e et e e e e ebe e e e e eabae e e eeabeeeeeenbaeeeeenreneeennsenas 7
Ry =T o1 T Lo [T PRt 7
OSTIME KINTB2UD ...eeiiiiiiieiieeeiitte et e e s s s sttt e e e e e s s sabb et e e e e eessaabsbeaaeeeessssnssssaaaeeessnsasnsenes 8
TASK LEST ettt ettt ettt ettt sttt et b e b e s bt e sae e e ab e et e e b e e e bt e ehe e et e e b e e b e e bt e eheeeaeeebeeteesheesanenas 9
.OSTCBTaSkNAME KASCIH SEIINE>.....ueieiiiiieeeeiiee e cetiee et e e e etee e e e etee e e e etee e e eeabae e e e abaeeeeenbeeeeennreeas 10
[[aTo 1 T o (o X O Y KO = 1 I o | SRR 10
LOSTCBPIIO KINTBU ...ttt sttt et s s ettt r e sne e s e saneeaneereens 10
LOSTCBSEAt KINTBUS ...ttt ettt e r e sre e s s ean e neenes 10
LOSTCBDIY <INT32U> .. eeieiieeiiieeiie ettt ettt sttt sb e st e e sabe e st eesabeesabeessbeesabeeesabeesaseesasaeesareesnns 10
.OSTCBEventPtr->0OSEventName <ASCII StrHNE>ceeiiiiiiiiiiiiieee e e s ee e e e e eecvrere e e e e s e e esanenes 11
O Y 01211V K= Vo o IR 12
. OSTCBCEXSWEEE KINT32U L.ttt ettt ettt ettt ettt e sbe e sttt e b e sbe e st e sareeabeebeens 12
. OSTCBSTKPEr KOS_STK ™3> ..ttt ettt ettt s st e b e sre e s e sanesareereenes 12
Other STACK Data...ccueeriiiiieeieeieee ettt ettt st sttt s b e b e sre e saee st e e neesneesnee e 12
CONSTANTS Loiiiiiiiiiiiti s s ara s 13
=T g T o] o Yo T N I USRSt 14

NN EE T g LI AN O] o o V=N 15

5.02
5.03
5.04
5.05
6.0
6.01
6.02
6.03
6.04
6.05
7.0
7.01
7.02
7.03
7.04
7.05
7.06
7.07
7.08
8.0
8.01
8.02
8.03
8.04
8.05
9.0
9.01
9.02
9.03
9.04
9.05
9.06

2= P PRSP 15
COUNT KINTLOUS ... eeeeeaasaaaaaaasasananns 16
Tasks Waiting KASCIH STEINGS ..eeiiiiiieieciiiiee et e et e e te e e e s e e e e s aae e e s e areeeeeabaeeeenraeesennsenas 16
OS_EVENT @ <SHEX @AIESSS ...vvveiiiiiieiciiiee ettt e ettt e e eette e e e ette e e s etaeeesebtaeesebtaeessnbteeessseneassnnes 16
Y T1 oo I OO P ST P PP PRSP 17
NN FE T g LI AN 1] o o g V=N 18
2= PP 18
MISE SHEX AAAIESSS .ttt et e e tee e e e e te e e e e e ba e e e eeabaeeeeeataeeeeeasaeeesenteeesennreeas 18
Tasks Waiting <ASCI STINE> ..ccocuiieieciiie ettt e e st e e e e e s e e e s e ate e e e e abae e e enaaeeeennrenas 18
OS_EVENT @ <SHEX @UAIESSS ...vveiiiiiieeceiiiee ettt e ettt e e ette e e e ettee e e ebaee e e ertaeesssteeeesbeeeesessneassnnes 19
Y ST Y= LI O L L= U= I N 20
LN EE T g LIRS AN 1] o g V=N 21
2= PP 21
ENTFES KINTLOUS ...ttt e s e 21
SIZE KINTLBOUS ...ttt e e e s et e e s et e e ssraee e e 21
o Gl 1Y =Y o 1 o B SRS 22
Tasks Waiting KASCIH STEINES ..eeieiirieeeecireee et ectre e eetreeeeetreeeestreeeeetreeeeeaseeeeearaeeeenreeeeennreeas 22
OS_EVENT @ <SHEX AUAIESS> ...vveiieeeireeeeeiteeeeeireeecetreeeeetreeeeetreeeeetaeeeesetsaeeseatseeeesatseeeesesseseesnnns 22
OS_Q @ <SHEX AAAIESS> ...viiiiiiieeeceiieeeceieee ettt e et e e s stee e e s sbae e e s sbteeeesbtaeessseeeessseeeessnsseeassnes 22
IMIUBEX LEST. ettt e e s e s s e e e s e e e e s amra e e e sanraeeesnnneeesas 23
NN EE T g LI AN O] o o V=N 24
R ettt b bt bttt ettt et e e bt e ehe e ea et et e e bt e bt e sheesaeeeareebe e beenes 24
PIP:OWNEr <INTLIOUS ...cviiiiiiiiiiiiiiiiiiic s s 24
Tasks Waiting KASCIH STEINE> ...ciiiuiiieieciiieeccee ettt e s e e e sae e e e sabe e e e s abeeeeesbaeeesnbeeesennsenas 25
OS_EVENT @ <SHEX @0AIrESS> ...vviiiiiiiiieieiieeesciteeeseitee e e et e e s stte e e ssbae e e s sbtaeessbeaeessbeeeessssesassnnes 25
VLT o) A =Y = XL U SPR 26
LN EE T g LI AN 1 1] o o g V=N 26
2] SO OO OO UP PP URURRRTON 27
Flags <INT8U, INT16U OF INT32U>ccoiiiiiiiieiieriiesie ettt sttt et e 27
OS_FLAG_GRP @ <HEX AdArESS>uviiiiciiieeieiiieecciteeeesiteeeestteeesetteeeessttaeessssteeessbseeessseaeassnnes 27
Tasks Waiting KASCIH STEINE S ...eiiiciiieeciiieeeeciee et srree e et e e e re e e e s e e e s s abeeeesnbaeeeenteeesennseeas 27
Wait Type <Value => ASCII STINES ..vvviiiei ittt e e et e e e e e e st ree e e e e e e e s nnsaaaeeaeeeennns 28

9.07 Waiting for FIags <BINAry> ...t e e e e e e e aa e e e e e e e 28
L O T T o 1=l I oSO TSPPP 29
10.01 Y o101 T2 AV =1 U U 29
10.02 HTIMErS KINTLOUS ...ttt ettt st sttt b e s b e st e et e e beesbeesnne e 29
10.03 Timer Name SASCH STEINE > .o e e e e s eeeneeeas 30
10.04 Y =) Lol T 1AV 1S 374§ DTSRRI 30
10.05 OPLION KINTBUD ittt et e e e e s ettt e e e e s s st beeeeeessesaaabtbaeeeesssasnsraaaeeens 31
10.06 (DT 1V 1\ 1 371 © PSPPI 31
10.07 Period SINT32U> ...ttt sttt ettt e bt s bt sae e st e st e e beesbeesbeesanenas 32
10.08 Callback <void (*OS_TMR_CALLBACK)(void *ptmr, void *parg)>ccccccceevveeeecvereeennen. 32
10.09 07| oF: 1ol ANy - o T To [0 [T RSP 32
3 O B V=T o g o YA o o o 1 o T o [PPSR PPPP PP 33
11.01 1V T T 1AV = U RS 33
11.02 R ettt h e h e h et e bttt b e e bt e sb et sae e et e et e e beenbeenheesaneea 33
11.03 AVAII% KINTBUD ...ttt sttt et he e st sttt e b e e bt e sbeesateenbeebeesbeesaeenas 34
11.04 USEAY INTBUS ...ttt sttt ettt sttt ettt e b e sb e sbeesaeeeaeeeabeebeesbeesbeesaeenas 34
11.05 HBIKS AVAIl KINTLOUD ...eeiiiiiiciiee ettt et e e e et e e e st e e e e s sbae e e s nbaaeesnbeeeeenaneeas 34
11.06 HBIKS USEA KINTLOUS ...ttt ettee sttt e ettt e e e et e e e st e e e s nba e e e s nbaaeesnnbeaesennneeas 34
11.07 HBIKS MaX KINTLOUDeiiiiiieiieeeiee ettt et e sb e st e e sate e sbeeesabeesaseesaeeesabeesnns 34
11.08 BIK SiZ@ SINTLBUS ... ittt ettt ettt st ettt e b e b e sbe e sateeateeateebeesbeesbeesaeenas 34
11.09 OS_MEM @ <HEX AdAIrESS> ..cciiiiiiieee ettt e ettt e e e e e e e st eee e e e e s s e aabaeee e e e e e esannraneaeens 34
11.10 STArts @ <KHEX @dareSS>ciiiiiiiiieiiie et s e b s e s e nnnes 35

1.0 Introduction

This document describes the different variables that need to be displayed in order to implement ‘Kernel
Awareness’ for uC/OS-1l. It is assumed that you have access to the source code for puC/OS-II
(downloadable from www.micrium.com) as well as the uC/OS-I1 book (ISBN 978-1-57820-103-7) which
is available from Amazon.com or other fine book stores.

In this document we will present ‘screen shots’. These are only provided as examples of what has
previously been done. However, you are free to implement the Kernel Awareness that best suits your
debug environment.

HC/OS-11 performs substantial run-time statistics that can be displayed by kernel-aware debuggers and/or
HUC/Probe. UC/OS-II also provides information about the configuration of the system. Specifically, the
amount of RAM used by pC/OS-I11, including all internal variables and task stacks.

We will be using a Courier New font to represent variable or function names found in pC/OS-II.
Kernel Awareness actually only requires the reading and possibly writing of variables. Functions are
only mentioned as a reference.

Throughout the text in this document, you will see references in angular brackets about data types. These
are ‘compiler specific’ and, for ARM, are defined as follows:

/*
khkhkhkhkhkhkkhkkhkhkhhkhkhkhkhkhkhkhkkhkhkhhhkhkhbhhkhkhkhkhkhkhkhkhkhbhbkhkhhkhhhkhkhkhkhhbhbhhkhhhhhkhkhhbhbhkhkhhhhhhkhhrhkhkhkhkhkhkhhkhkhbhrhrhrhkhkhkkhkhkhkhhhhxxkx
* DATA TYPES

* (Compiler Specific)

KAk hkhkhkhkhkhkhhkhhhkhhhhhkhhhhkhkhhhkhk bk hkh bk h bk h bk hkhkhkh bk h bk ko hk bk hk Ak hhkh ko hkhk bk hhkhk ko ko hhkh bk hhkhkhhkhkhkhkhkhkhhkhkhkhkrhhkhkhhkhkhrhrhhhhdxkhx*k
*/

typedef unsigned char BOOLEAN;

typedef unsigned char INT8U; /* Unsigned 8 bit quantity */
typedef signed char INT8S; /* Signed 8 bit quantity */
typedef unsigned short INT16U; /* Unsigned 16 bit quantity */
typedef signed short INT16S; /* Signed 16 bit quantity */
typedef unsigned int INT32U; /* Unsigned 32 bit quantity */
typedef signed int INT32S; /* Signed 32 bit quantity */
typedef float FP32; /* Single precision floating point */
typedef double FP64; /* Double precision floating point */
typedef unsigned int 0S_STK; /* Each stack entry is 32-bit wide */
typedef unsigned int 0S_CPU_SR; /* Define size of CPU status register */

‘ASCII string’ means that the value is a pointer to an ASCII string that is NUL terminated.

The information found in this document is assumed to be correct but is not guaranteed to be without
mistakes or omissions.

http://www.micrium.com/

2.0 General Status

OSRunning
OSCPUUsage . Ruriing
OSTaskCtr Statistics: Ready
CPU Uzage
0SIdleCtr Tasks:
|dle Caunter:
Context Switches:
0OSCtxSwCtr
Timers
Timner Time:
. Used Timers:
OSTmrTime .
Free Timers
0OSTmrUsed
OSTmrFree

OSVersionNbr
VxX.yy.zz
|MC/OS-Il RTOS V2920t
. OSIntNesting
Meszting
1% [Htermupt; 0
E Mulitask Lock: 0 OSLockNesting
302
Fa00 Step Mode: Dizabled =—— UNUSED
Time [ticks]: 2600

16 Update Al

2.1 OSRunning <BOOLEAN>
OSRunning is set to 1 when the kernel is running (multitasking has started) and 0 when not.
You can replace the value by a symbol and/or a text string as shown above.

2.2 O0OSCPUUsage <INT8U>

0SCPUUsage contains CPU usage in 1% increment (0 to 100). The ‘%’ is added in the
formatting. This variable ONLY exists if the variable OSTaskStatEn is set to 1 which is a

ROM variable declared in OS_DBG. C.

2.3 OSTaskCtr <INT8U>

OSTaskCtr indicates the total number of tasks created in the application. This includes the idle

task and statistic task (if enabled).

2.4 OSldleCtr <INT32U>

0SIdleCtr increments whenever uC/OS-I1l is in the idle task. OSldleCtr is reset every 100 ms

by OS TaskStat ().

2.5 OSCtxSwCtr <INT32U>
0SCtxSwCtr increments whenever uC/OS-I1 performs a context switch. When 0SCtxSwCtr
overflows, it goes back to 0.

2.6 OSTmrTime <INT32U>

OSTmrTime 1is incremented by OSTmr Task () which typically executes every 100 ms.
When 0STmrTime overflows, it goes back to 0. This variable ONLY exists if the variable
OSTmrEn is set to 1 which is a ROM variable declared in 0S_DBG. C.

2.7 OSTmrUsed <INT16U>
0STmrUsed indicates how many timers are actually in use (created). This variable ONLY
exists if the variable OSTmrEn is set to 1 which is a ROM variable declared in 0S_DBG. C.

2.8 OSTmrFree <INT16U>
OSTmrFree indicates how many timers are available from the timer pool. This variable ONLY
exists if the variable OSTmrEn is set to 1 which is a ROM variable declared in 0S_DBG.C.

2.9 OSVersionNumber <INT16U>

OSVersionNbr is a 16-bit value and represents the version number as ‘xyyzz’. When
displaying, you should separate the fields using decimal points, i.e. x.yy.zz.

2.10 OSIntNesting <INT8U>
0SIntNesting indicates the level of interrupt nesting. If this value is 2, for example, this
indicates that an interrupt was interrupted by another interrupt.

2.11 OSLockNesting <INT8U>

OSLockNesting indicates the number of times 0SSchedLock () has been called. When
OSLockNesting is greater than O then the scheduler is locked and rescheduling will not occur
until 0SLockNesting is decremented back to 0 by calling 0SSchedUnlock () . Note that
OSTaskDel () also increments OSLockNesting for a brief instant to prevent rescheduling
while deleting a task.

2.12 Step Mode
This functionality has been removed.

2.13 OSTime <INT32U>
OSTime is the tick counter and is incremented by OSTimeTick (). When OSTime overflows,
it goes back to 0.

3.0 TaskList

The task list shows the contents of each task’s TCB (Task Control Block). Each task is assigned a TCB
when the task is created. TCBs are assigned by the kernel from a pool of TCBs. There are 0STaskMax
entries in the TCB pool. When a task is deleted, the TCB of that task is returned to the TCB pool. The
pool consist of a linked list created from the entries in OSTCBTb1 [].

You don’t actually need to access the linked list. Instead, you index into OSTCBTb1[] from O to

OSTaskCtr-1.

(char *) (OSTCBTbl[i] .OSTCBTaskName)

Index into OSTCBTb1[]

(INT8U) (OSTCBTb1[1i].0STCBPrio)

(INT8U) (OSTCBTb1[i].0STCBStat)

(OS_STK *) (OSTCBTb1l[i].0STCBStkPtr)

Name Ref Prio State Dly Walting On Msg Ctx Sw
Start Task 3 4 Dlv 22 &
? 4 & Dly 1 24789
= 7 5 7 Ready o 2479
uC/05-II Tmr 2 &1 Ready 0 uC/0S-ITI TmrSignal 26
uC/05-II Stat 1 62 Ready a 25
uC/05-II Idle a 63 Ready a 2483

Stk Ptr
20002B98
20002D98
20002F98
200025B0
200021C0
2000323D8

Max%
33%
25%
25%
20%
17%
12%

Cur%
25%
25%
25%
20%
17%
12%

Max
172
128
1za
104

ag

[}

Cur Size

1za8 512
1za8 512
1za8 51z
104 512
=1} 512
64 512

Starts @
20002C18
20002E18
20003018
20003618
20003218
20003418

Ends @&
2000218
20002C18
20002E18
20002418
20003018
20003218

Task List | Timer List | Semaphore List | Mutex List | Maibox ist | Queue List | Event Flag Groups | M zmory Partiti ns | Config. Constants

(INT32U)OSTCBTb1[1].0STCBDly

(char *) (OSTCBTbl[i] .0OSTCBEventPtr->0OSEventName)

(void *) (OSTCBTbl[i].0OSTCBMsg)

(INT32U) (OSTCBTb1[1].0STCBCtxSwCtr)

See below

3.01 .0OSTCBTaskName <ASCII string>

OSTCBTb1l[i] .0STCBTaskName iS a pointer to a NUL terminated ASCII string. This
variable ONLY exists if the variable 0STaskNameEn is set to 1 which is a ROM variable
declared in OS_DBG.C.

3.02 Index into OSTCBTDbI[]
The value of i’ above references an entry in OSTCBTb1 []. The task list will contain at most
OSTaskCtr entries numbered 0 to 0OSTaskCtr-1.

3.03 .OSTCBPrio <INT8U>
OSTCBTb1[i] .0STCBPrio indicates the priority of the task. A low number indicates a high
priority.

3.04 .0OSTCBStat <INT8U>
OSTCBTb1l[i] .0STCBStat is the current state of the task:

0x00 Ready

0x01 Pending on Semaphore

0x02 Pending on Mailbox

0x04 Pending on Message Queue

0x08 Suspended

0x10 Pending on Mutex

0x20 Pending on Event Flags

0x40

0x80 Pending on multiple events

0x09 Pending on Semaphore and Suspended
Ox0A Pending on Mailbox and Suspended
0x0C Pending on Message Queue and Suspended
0x18 Pending on Mutex and Suspended
0x28 Pending on Event Flags and Suspended

3.05 .0STCBDIly <INT32U>

OSTCBTb1[i].0STCBDly indicates whether a task is waiting for a timeout or is simply
suspended waiting for time to expire. If any of the bits in OSTCBTb1 [1] .0OSTCBStat (except
0x08) is set then the task is waiting for an event and OSTCBTb1 [1] .0STCBD1y specifies the
timeout.

If OSTCBTb1[1i] .0STCBStat is 0x00 (i.e. Ready) but OSTCBTb1 [i] .0STCBDly is non-
zero then the task is actually ‘sleeping’ and will wake up when the time delay reaches O or, the
time delay has been cancelled by calling 0STimeDlyResume ().

3.06 .OSTCBEventPtr->0OSEventName <ASCII string>

OSTCBTb1l[i] .0STCBEventPtr->0SEventName is a pointer to an ASCII string that
contains the name of the event the task is waiting on, assuming the task is waiting for a
Semaphore, a Mailbox, a Message Queue, an Event Flag Group or a Mutex. The first byte where
OSTCBTb1 [i]->0STCBEventPtr is pointing at tells you whether the data structure being
pointed to is an OS_EVENT (Semaphore, a Mailbox, a Message Queue or a Mutex) or an
OS_FLAG_GRP (Event Flags).

This variable ONLY exists if the variable OSEventNameEn is set to 1 which is a ROM variable
declared in 0S_DBG. C.

So:
Value of: Event Type Use
* (INT8U *) (OSTCBTb1l[i]->OSTCBEventPtr) Data Type
0 Unused N/A
1 Mailbox OS EVENT
2 Message Queue 0S EVENT
3 Semaphore 0OS_ EVENT
4 Mutex 0OS EVENT
5 Event Flag OS FLAG GRP

From the value above, you are able to access the ASCII name as follows:

Valueis 1, 2, 3 or 4:
OSTCBTbl[i] ->OSTCBEventPtr->0OSEventName

Value is 5:
A) This is a bit more complex. First, you need to obtain the address (i.e. a pointer to) of the
OS_FLAG_NODE from the TCB:

(OS_FLAG _NODE *)OSTCBTbl[i]->0STCBFlagNode
B) Then, from this pointer, get the address of the event flag group:
(OS_FLAG_GRP *)FlagNodePtr->OSFlagNodeFlagGrp
C) Then, from this pointer, get the address of the ASCII string:

(char *)FlagGrpPtr->OSFlagName

3.07 .OSTCBMsg <void *>

OSTCBTb1l[i].0STCBMsg contains a pointer to the last message received. This field
contains @ NULL pointer whenever the message is delivered to the waiting task. This variable
ONLY exists if the at least ONE of the following variables is set to 1: 0SQEn or OSMboXxEn.
These are declared in OS_DBG.C.

3.08 .OSTCBCtxSwCtr <INT32U>

OSTCBTb1[i] .0STCBCtxSwCtr indicates the number of times a task has been switched in.
When 0, it indicates that a task has not executed yet. This variable ONLY exists if the variable
OSTaskProfileEn issetto 1 which is a ROM variable declared in 0OS_DBG.C.

3.09 .OSTCBStkPtr <OS_STK *>

OSTCBTb1l[i] .0STCBStkPtr isa pointer to the top-of-stack of each task. Recall that with
HC/OS-11, the stack frame pointed to by OSTCBTb1 [1] .0OSTCBStkPtr looks as if an interrupt
just occurred and the CPU registers were pushed onto the task’s stack. This is true for all tasks
except the current task that is executing. In this case, the CPU’s stack pointer points to the
current stack frame and the OSTCBTb1[i] .0OSTCBStkPtr entry points to the stack frame
when the task was last suspended. However, there is little value to the programmer for this
information.

3.10 Other Stack Data
The next seven columns are provided to display stack usage data.

Max% = OSTCBTb1l[1].0STCBStkUsed * 100
/ OSTCBTb1l[i].0OSTCBStkSize;

Cur% = No longer used
Max = OSTCBTbl[i].0OSTCBStkUsed;
Size = OSTCBTbl[i] .0OSTCBStkSize;

Starts @ = OSTCBTbl[i].0STCBStkBottom
+ OSTCBTb1l[i].0STCBStkSize;

Ends @

OSTCBTb1l[i] .0OSTCBStkBottom;

4.0 Constants
The file OS_DBG. C provides information about the RAM usage of puC/OS-11 as shown below. All values
are INT16U except for 0SEndiannessTest which is a 32 bit value.

OSEndiannessTest is a variable that can be examined to determine whether the CPU is a big or little
endian machine. If the byte found at the base address of OSEndiannessTest is 0x12 then the CPU is
a little endian machine. If the value is 0x78 then it’s a big endian machine.

OSDataSize indicates the total RAM size used by uC/OS-Il which includes the RAM needed for the
idle and statistics task stacks.

Name Value 0STaskCreateEn 1

Endianness Little 02TaskCreateExtEn 1
55 o

0SDataSize 8506 OSTaskDelEn 1
0SDebugEn 1 0STaskIdlestkSize 128
_

0SEventEn 1 GETaStHaE 22
0SEventMax 175 G:Ta”‘NamEFn 1
0SEventNameEn 1 OiTaskfruflleEn 1
0SEventSize 24 08TaskStatEn L
oSEvent ThlSize 4700 0STaskStatStkChkEn 1
= =

0SFlagEn 1 0STaskStatStkSize 128
=]

08FlagGrpSize 16 05 TaskSwHookEn 1
08Pl agMax 5 OSTCEPrioThlMax G4
_

05FlagNameEn 1 OET?BSIEE - a8
0SFlagNodeSize 20 OSTicksPerSec 1000
0SFlagWidth 2 05TimeTickHookEn 1
_

0SLowestPrio 63 O8TmrCEghax 16
0SMboxEn 1 0STmrC fgMameEn 1
=

0SMemEn 1 0STmrCEfgTicksPersec 10
o=l

OSMemMas 5 0STmrCfogWheslSize 8
_

OSTmrE 1

OSMemtameEn 1 Ii rF?

0SMemSi ze 24 Gijralzf. 40
0SMemTh1Si ze 120 OSTmrIblSize 540
OSMuEexEn 1 05TmrWheelSize 8
_

0SPtrSize 4 0STmriWheel ThlS1ize G4
_ _

0S0En 1 OSVersionNbr 29208
=2 —

0SQ0Max 4 Task List Config. Constants

05051 ze 24

0SRdvThblSize 8

05SemEn 1

085tkWidth 4

5.0 Semaphore List
The kernel awareness semaphore list ONLY exists if 0OSSemEn is setto 1 (see OS_DBG.C).

Semaphores are created by calling 0SSemCreate () and when a semaphore is created, an OS_EVENT
structure is assigned from a pool of 0S_EVENTS. You should note that an OS_EVENT is also used to
store a mailbox, queue or mutex. To distinguish between these different events, the first byte of an
OS_EVENT specifies the event type:

Event Type Value of .0OSEventType
Unused
Mailbox

Queue

Semaphore
Mutex
Event Flag

gl (N~ |O

The OS_EVENT structure as used by semaphores is shown below:

event
p 0S_EVENT TYPE SEM _0SEventType
el .0SEventCnt
(void *)O0 .OSEventPtr
0x00 .0OSEventGrp
7 6 5 4 3 2 1 0 .0SEventTbl []

ALL
initialized
to

0x00

6362 |61]|60]|59|58|57]|56

The bitmap represented by . 0SEventTb1 [] indicates which task is waiting for the semaphore. A 1 in
the bitmap indicates that a task (at the priority corresponding to the bit position) is waiting for the
semaphore. For example, if bit 3in .0SEventTb1 [0] is set to 1 then, task at priority 3 is waiting for
the semaphore. As of VV2.80, uC/OS-11 supports up to 255 tasks and thus the above 8x8 table can actually
be a 16x16 table as shown below. The variable ‘OST.owestPrio’ can be read by the debugger to
determine whether . 0OSEventTb1 [] contains INT8U or INT16U entries.

HPT (0) _

15 0
HPT (0)
7 0
OSEventTbl[]
8x8 Max.
LPT (63) .OSEventTbl(]
16x16 Max.

LPT (254)

NEVER used,
0S PRIO SELF

OS_LOWEST _PRIO <= 63 OS_LOWEST_PRIO > 63

To display the semaphore list, you will need to scan the 0SEventTbl [] and display the contents of the
OSEventTbl [] for those entries that have OSEventTbl [1] .OSEventType equal to 3. Note that
.0OSEventType iSan INT8U.

Example display:

Name Ref Count Tasks Waiting OS EVENT @
Create Sem 5 0 - 0x20000078
Serial Lock 4 1 - 0x20000060
Serial Rx Wait 3 0 - 0x20000048
Serial Tx Wait 2 0 - 0x20000030
uC/OS-1l TmrLock 0 1 - 0x20000000
uC/OS-Il Tmr Signal 1 0 61-uC/OS-Il Tmr 0x20000018

5.01 Name <ASCII string>

OSEventTbl[i].0SEventName is a pointer to a NUL terminated ASCII string. Note that
this field is not shown in the illustration above because it was added after the illustration was
done. This variable ONLY exists if the variable OSEventNameEn is set to 1 which is a ROM
variable declared in 0S_DBG.C.

5.02 Ref.
This corresponds to the index into OSEventTb1 [] for the semaphore.

5.03 Count<INT16U>
This entry corresponds to the semaphore count value (a 16-bit value) and is found in
OSEventTbl[i] .0SEventCnt.

5.04 Tasks Waiting <ASCII string>
There are two methods you can use to determine which tasks are waiting for the semaphore.

1) You can scan the OSTCBTb1 [] and find which OSTCBTb1 [j] .0STCBEventPtr points

to the OSEventTbl[] entry you are displaying. In other words, assuming that ‘i
corresponds to the current OSEventTb1 [] entry and ‘j’ to the scanned TCB table:

for (j = 0; j < OSTaskCtr; j++) {
if (OSTCBTbl[j].0STCBEventPtr == &0SEventTbl[i]) {
Print the name of the task (i.e. OSTCBTbl[]j].OSTCBTaskName)
}

2) You can also scan the .0SEventTb1 [] and find which bit are set in the table. The bit
position corresponds to the task priority that is waiting for the semaphore. From this, you can
use the priority number to index into OSTCBTb1 [] and determine the name of the task
waiting for the semaphore (i.e. OSTCBTb1 [prio] .0STCBTaskName).

You should note that in the ‘Task Waiting” column, you could add the task priority in front of the
task name as shown: “prio-task name”. The task priority is obtained by
OSTCBTb1l[j].0OSTCRBPrio.

This variable ONLY exists if the variable 0STaskNameEn is set to 1 which is a ROM variable

declared in 0S_DBG.C.

5.05 OS_EVENT @ <Hex address>
This corresponds to the address of the 0SEventTbl [] entry, i.e. «OSEventTbl [i].

6.0 Mailbox List
The kernel awareness mailbox list ONLY exists if OSMboxEn is setto 1 (see OS_DBG. C).

Mailboxes are created by calling OSMboxCreate () and when a mailbox is created, an OS_EVENT
structure is assigned from a pool of 0S_EVENTS. You should note that an OS_EVENT is also used to
store a semaphore, queue or mutex. To distinguish between these different events, the first byte of an
OS_EVENT specifies the event type:

Event Type Value of .0OSEventType
Unused 0

Mailbox
Queue
Semaphore
Mutex
Event Flag

ghwiN -

The 0S_EVENT structure as used to hold a mailbox object is shown below.

event —
P 0S_EVENT TYPE MBOX _OSEventType
LR, .OSEventcnt
msg .0SEventPtr
0x00 .OSEventGrp
7 6 5 4 3 2 1 0 .0SEventTbl []
ALL
initialized

to
0x00

631626160 |59|58]|57]56

To display the mailbox, you will need to scan the OSEventTbl[] and display the contents of the
OSEventTbl [] for those entries that have OSEventTbl [1] .0SEventType equal to 1. Note that
.0OSEventType iSan INTS8U.

Example display:

Name Ref Msg Tasks Waiting OS_EVENT @
UART Rx Mbx 6 0 16-UART Rx Task 0x20000090
UART Tx Mbx 7 0x200010F0 - 0x200000A8

6.01 Name <ASCII string>

OSEventTbl[i].0SEventName Iis a pointer to a NUL terminated ASCII string. Note that
this field is not shown in the illustration above because it was added after the illustration was
done. This variable ONLY exists if the variable OSEventNameEn is set to 1 which is a ROM
variable declared in 0OS_DBG.C.

6.02 Ref.
This corresponds to the index into OSEventTbl [] for the mailbox.

6.03 Msg <Hex address>

This entry corresponds to the content of the mailbox. The mailbox is empty when this field
contains a NULL pointer. Any non-NULL pointer corresponds to a message that was posted to
the mailbox. The message is placed in the OSEventTbl [i] .OSEventPtr field.

6.04 Tasks Waiting <ASCII string>
There are two methods you can use to determine which tasks are waiting for the mailbox.

1) You can scan the 0STCBTb1 [] and find which OSTCBTb1 [j] .0STCBEventPtr points

to the OSEventTbl[] entry you are displaying. In other words, assuming that ‘i
corresponds to the current OSEventTb1 [] entry and ‘j’ to the scanned TCB table:

for (j = 0; j < OSTaskCtr; j++) {
if (OSTCBTbl[j].0OSTCBEventPtr == &O0SEventTbl[i]) {
Print the name of the task (i.e. OSTCBTbl[]j].0OSTCBTaskName)
}

2) You can also scan the .0SEventTbl [] and find which bit are set in the table. The bit
position corresponds to the task priority that is waiting for the mailbox. From this, you can
use the priority number to index into OSTCBTb1 [] and determine the name of the task
waiting for the mailbox (i.e. OSTCBTb1 [prio] .0STCBTaskName).

You should note that in the ‘Task Waiting’ column, you could add the task priority in front of the
task name as shown: “prio-task name”. The task priority is obtained by
OSTCBTb1l[j] .0OSTCRPrio.

This variable ONLY exists if the variable 0STaskNameEn is set to 1 which is a ROM variable
declared in 0S_DBG.C.

6.05 OS_EVENT @ <Hex address>
This corresponds to the address of the OSEventTb1 [] entry, i.e. 8§0SEventTbl [1].

7.0 Message Queue List
The kernel awareness message queue list ONLY exists if OSQEn is setto 1 (see OS_DBG.C).

Message queues are created by calling 0SQCreate () and when a queue is created, an OS_EVENT
structure is assigned from a pool of 0S_EVENTS. You should note that an OS_EVENT is also used to
store a semaphore, mailbox or mutex. To distinguish between these different events, the first byte of an
OS_EVENT specifies the event type:

Event Type Value of .0OSEventType
Unused
Mailbox

Queue
Semaphore
Mutex
Event Flag

TR IWIN (RO

A message queue actually uses another data structure (OS_ Q) which is allocated at the same time as the
OS_EVENT structure. This is because an OS_EVENT doesn’t contain all the fields needed to implement
a message queue. The OS_Q data structure is pointed to by . OSEventPtr when the queue is created.

The 0S_EVENT and OS_Q structures are shown below.

OS_EVENT
pevent — 0S_EVENT_TYPE_Q .0SEventType
0x00 OSEventCnt
9 .OSEventPtr

Tlefs]|4]3]2|1]|0 OSEventTbl 1

ALL
initialized
to

0x00

void *MsgTblI[]

|
|

| » message
(= @®— |+ message
@—————» message

.0SQEntries

[@ ——————|—» message
. .7—’ message
._ .7_’ message

0sQsize
OSQEntries uslz

|

To display the mailbox, you will need to scan the OSEventTbl [] and display the contents of the
OSEventTbl [] for those entries that have OSEventTbl [1] .0SEventType equal to 2. Note that
.0OSEventType isan INT8U.

Example display:

Name Ref Entries Size Next Tasks OS EVENT 0S Q
Msg Waiting @ @
UART RxQ 8 5 10 0x20001000 - 0x200000C0 0x20001000
UART Tx Q 9 0 20 0x200010F0 15-UART Tx 0x200000D8 0x20001020
PID Ctrl 10 0 8 - 10-PID 1 0x200000E0Q 0x20001040
11-PID 2
13-PID 4

7.01 Name <ASCII string>

OSEventTbl[i].0SEventName Iis a pointer to a NUL terminated ASCII string. Note that
this field is not shown in the illustration above because it was added after the illustration was
done. This variable ONLY exists if the variable OSEventNameEn is set to 1 which is a ROM
variable declared in 0S_ DBG.C.

7.02 Ref.
This corresponds to the index into OSEventTb1 [] for the message queue.

7.03 Entries <INT16U>
This entry corresponds to the number of messages currently placed in the message queue. To
access this field you need to obtain the address of the OS_Q structure as follows:

05_Q “*p_a;

j<ie| = (0S_Q *)OSEventTbl[i] .OSEventPtr;
Entries = p g->0SQEntries;

7.04 Size <INT16U>
This entry corresponds to the maximum number of messages that can be placed in the message
gueue. To access this field you need to obtain the address of the OS_Q structure as follows:

0S QO *p q;

p_4d

Size

(0S_Q *)OSEventTbl[i] .OSEventPtr;
p_g->0SQSize;

7.05 Next Msg <void *>
This entry corresponds to the next message that will be extracted from the message queue.

0S QO *p qg;
void *p msg

jolie| = (0S_Q *)OSEventTbl[i] .0SEventPtr;
NextMsg = *p g->0SQOut;

7.06 Tasks Waiting <ASCII string>
There are two methods you can use to determine which tasks are waiting for the message queue.

1) You can scan the 0STCBTb1 [] and find which OSTCBTb1 [j] .0STCBEventPtr points

to the OSEventTbl[] entry you are displaying. In other words, assuming that ‘i
corresponds to the current OSEventTbl [] entry and ‘j’ to the scanned TCB table:

for (j = 0; j < OSTaskCtr; j++) {
if (OSTCBTbl[j].0OSTCBEventPtr == &0OSEventTbl[i]) {
Print the name of the task (i.e. OSTCBTbl[]j].0OSTCBTaskName)
}

2) You can also scan the .0SEventTbl [] and find which bit are set in the table. The bit
position corresponds to the task priority that is waiting for the message queue. From this, you
can use the priority number to index into OSTCBTb1 [] and determine the name of the task
waiting for the message queue (i.e. OSTCBTb1 [prio] .0STCBTaskName).

You should note that in the ‘Task Waiting” column, you could add the task priority in front of the
task name as shown: “prio-task name”. The task priority is obtained by
OSTCBTb1[j].0STCBPrio.

This variable ONLY exists if the variable 0STaskNameEn is set to 1 which is a ROM variable
declared in 0S_DBG.C.

7.07 OS_EVENT @ <Hex address>
This corresponds to the address of the 0SEventTbl [] entry, i.e. «OSEventTbl [i].

7.08 0S_Q @ <Hex address>

This corresponds to the address of the 0S_Q used by the message queue and corresponds to:
OSEventTbl[i] .0SEventPtr.

8.0 Mutex List
The kernel awareness mutex list ONLY exists if OSMutexEn is setto 1 (see OS_DBG. C).

Mutexes are created by calling OSMutexCreate () and when a mutex is created, an OS_EVENT
structure is assigned from a pool of 0S_EVENTS. You should note that an OS_EVENT is also used to
store a mailbox, queue or semaphore. To distinguish between these different events, the first byte of an
OS_EVENT specifies the event type:

Event Type Value of .0OSEventType
Unused
Mailbox

Queue

Semaphore

Mutex
Event Flag

gl DN |wIN R o

The 0S_EVENT structure (as used for Mutexes) is shown below:

pevent — 0S EVENT TYPE MUTEX .0SEventType
prio ‘ OXEF .OSEventcnt
i *) 0
Aere Rl .OSEvVentdtr
0xo0 .OSEVentGrp
7|6 |5 |4]3|2]1]0 .0SEventTbl[]

ALL
initialized
to

0x00

63 |62 |61|60|59|58|57]|56

To display the mutex list, you will need to scan the 0OSEventTbl [] and display the contents of the
OSEventTbl [] for those entries that have OSEventTbl [1] .OSEventType equal to 4. Note that
.0OSEventType iSan INT8U.

Example display:

Name Ref PIP:Owner Tasks Waiting OS_EVENT
@
Display Mutex 11 20:25 26-User I/F Task 0x200000F8

27-Line Draw Task

28-Temperature Update Task

33-Pressure Update Task

SPI Mutex 12 10:Avail - 0x20000110

8.01 Name <ASCII string>

OSEventTbl[i].0SEventName Iis a pointer to a NUL terminated ASCII string. Note that
this field is not shown in the illustration above because it was added after the illustration was
done. This variable ONLY exists if the variable OSEventNameEn is set to 1 which is a ROM
variable declared in 0S_ DBG.C.

8.02 Ref.
This corresponds to the index into OSEventTbl [] for the mutex.

8.03 PIP:Owner <INT16U>

This entry contains two fields. The lower 8 bits contains either the priority of the owner task or
OxFF. The mutex is available when OxFF and, the lower 8 bits contains the priority of the owner
when a task acquires the mutex.

The upper 8 bits contains the ‘priority ceiling’ priority. In other words, if a low priority task
owns the mutex and a higher priority task needs to access the shared resource then the low
priority task will get its priority raised to the ‘priority ceiling’ priority in order to reduce priority
inversions.

This column should indicate:

PIP = OSEventTbl[i] .OSEventCnt >> 8;
If ((OSEventTbl[i].OSEventCnt & OxFF) == O0xFF)
Display “PIP:Avail”
Else
Display “PIP:prio” // prio is the value of (in decimal)

// OSEventTbl[i] .OSEventCnt & OxFF

8.04 Tasks Waiting <ASCII string>
There are two methods you can use to determine which tasks are waiting for the mutex.

1)

2)

You can scan the 0STCBTb1 [] and find which OSTCBTb1 [j] .OSTCBEventPtr points
to the OSEventTbl[] entry you are displaying. In other words, assuming that ‘i’
corresponds to the current OSEventTb1 [] entry and ‘j’ to the scanned TCB table:

for (j = 0; j < OSTaskCtr; j++) {
if (OSTCBTbl[j].0STCBEventPtr == &O0SEventTbl[i]) {
Print the name of the task (i.e. OSTCBTbl[]j].0OSTCBTaskName)
}

You can also scan the .0SEventTbl[] and find which bit are set in the table. The bit
position corresponds to the task priority that is waiting for the mutex. From this, you can use
the priority number to index into OSTCBTb1 [] and determine the name of the task waiting
for the mutex (i.e. OSTCBTb1 [prio] .0STCBTaskName).

This variable ONLY exists if the variable 0STaskNameEn is set to 1 which is a ROM variable
declared in 0S_DBG.C.

8.05 OS_EVENT @ <Hex address>
This corresponds to the address of the 0SEventTbl [] entry, i.e. «OSEventTbl [i].

9.0 EventFlag List
The kernel awareness event flag list ONLY exists if OSFlagEn is set to 1 (see OS_DBG. C).

Event flags are created by calling OSFlagCreate () and when an event flag is created, an
OS_FLAG_GRP structure is assigned from a pool of 0OS_ FLAG GRPs.

To display the event flag list, you will need to scan a linked list of items (see Figure 9.2 of the uC/OS-II
book, replicated here) and display multiple ‘lines’ based on the length of the list.

0S_FLAG_GRP l 1 { 0S_FLAG_NODE

.0SFlagWaitList » ‘

@ o @
oo [0 (OO0 (OODOOOOO) OO s

.0SFlagType 0OS_EVENT_TYPE_FLAG AND or OR RND or OR AND or OR .0SFlagNodeWaltType

o—— o— @ —}—— () -osrlagnodeNext

.0OSTCEBFlaglNode

O .q——. q__. q——. .0SFlagNodePrev
® ® ® .0SFlagNodeTCE
‘ ‘ ‘ .0STCBFlagNode
0S_TCB

The following sub-section explains what each of the columns in the display above should contain.

Example display:

Name Ref Flags OS FLAG_GRP Tasks Wait Waiting
@ Waiting Type for Flags

Engine Flags 0 1100 1001 0x20000200 39-RPM Calc Task AND 0000 0010
40-Timing Angle Task OR 0010 0100

47-Air Manifold Pres OR 0001 0100

9.01 Name <ASCII string>

OSEventTbl[i].0SEventName is a pointer to a NUL terminated ASCII string. Note that
this field is not shown in the illustration above because it was added after the illustration was
done. This variable ONLY exists if the variable OSFlagNameEn is set to 1 which is a ROM
variable declared in 0S_DBG. C.

9.02 Ref.
This corresponds to the index into 0SF1agTb1 [] for the event flag.

9.03 Flags <INT8U, INT16U or INT32U>

This entry contains the current state of each of the event flags in the event flag group. This filed
is either 8, 16 or 32 bit wide depending on the value of a configuration constant. You can
examine the variable ‘OSFlagWidth’ which will indicate the number of bytes (i.e. 1, 2 or 4).

The value to display in this column is obtained by: 0OSFlagTbl[i].0SFlagFlags. This
field should be displayed in binary format. Because of the difficulty in reading long bit strings,
it’s preferable to separate nibbles:

8 Bits: XXXX XXXX
16 Bits: XXXX XXXX T XXXX XXXX
32 Bits: XXXX XXXX & XXXX XXXX & XXXX XXXX & XXXX XXXX

Note how colons are used to separate 8 bit portions for readability.

9.04 OS_FLAG_GRP @ <Hex address>
This corresponds to the address of the 0SF1agTbl [] entry, i.e. §OSFlagTbl [i].

9.05 Tasks Waiting <ASCII string>
In order to display the list of tasks waiting for the event flag group, you will need to go through
the linked list of 0S_FLAG NODE. You proceed as follows:

1) You read the pointer to the beginning of the listt 0OSFlagTbl[i] .0OSFlagWaitList
(we’ll call this p_node). If this is NOT a NULL pointer then you follow the linked list of
OS_FLAG_NODE until you encounter a NULL pointer.

2) For each entry of 0OS_FLAG NODE Yyou can obtain the name of the waiting task by getting

the address of the TCB from using p. node->0SFlagNodeTCB (we’ll call thisp tcb).

3) The name of the task waiting is then obtained by accessing ptcb->0STCBName.

This variable ONLY exists if the variable 0STaskNameEn is set to 1 which is a ROM variable
declared in 0S_DBG. C.

9.06 Wait Type <value -> ASCII string>
This field indicates whether the task is waiting for any of the bits to be set or cleared or, for all the
bits to be set or cleared.

In order to display the list of tasks waiting for the event flag group, you will need to go through
the linked list of OS_ FLAG NODE. You proceed as follows:

1)

2)

You read the pointer to the beginning of the list: OSFlagTbl[i] .0SFlagWaitList
(we’ll call this p_node). If this is NOT a NULL pointer then you follow the linked list of
OS_FLAG_NODE until you encounter a NULL pointer.

For each entry of OS FLAG NODE you can obtain the wait type of the waiting task by
accessing the p. node->0SFlagNodeWaitType and display this as follows:

Value of .OSFlagNodeWaitType Display value
0 “Wait for ALL 0”
1 “Wait for ANY 0”
2 “Wait for ALL 17
3 “Wait for ANY 17

9.07 Waiting for Flags <binary>
This field indicates which event flags the task is waiting for.

In order to display the list of tasks waiting for the event flag group, you will need to go through
the linked list of 0S_ FLAG NODE. You proceed as follows:

1)

2)

You read the pointer to the beginning of the list: 0SFlagTbl[i] .0SFlagWaitList
(we’ll call this p_node). If this is NOT a NULL pointer then you follow the linked list of
OS_FLAG_NODE until you encounter a NULL pointer.

For each entry of OS_FLAG NODE you can obtain the flags that the task is waiting for by
accessing the p_ node->0SFlagNodeFlags and display this as follows, preferably in
binary format. Because of the difficulty in reading long bit strings, it’s preferable to separate
nibbles with spaces and 8 bit quantities with *:’:

8 Bits: XXXX XXXX
16 Bits: XXXX XXXX & XXXX XXXX
32 Bits: XXXX XXXX & XXXX XXXX & XXXX XXXX © XXXX XXXX

10.0 Timer List
The kernel awareness timer list ONLY exists if OSTmrEn is setto 1 (see OS_DBG. C).

HC/OS-11 implements software based timers allowing periodic or one-shot events to occur. Timers were
added in V2.83. The application can have any number of timers (limited by RAM). The resolution of
timers is typically set to 1/10 sec. Timers are managed by a ‘timer task’ (OSTmr Task () which is
found in OS_TMR.C).

An optional callback function can be executed when a timer expires.

In order to distribute the work done by the timer task, the management of timers is implemented using a
‘timer wheel’. Each ‘spoke’ of the timer wheel contains timers to be updated. The actual spoke where a
timer is inserted depends on the expected expiration time of the timer. The size of the timer wheel is set
at configuration time (OS_CFG. H) and typically, the size is set to a prime number.

To display the timer list, you will need to scan a linked list of items at each spoke.

Example display:

Spoke# | #Timers TimerName Match | Option | Delay | Period | Callback | Callback
Arg
0 2 Disc Valve Open 1000 | One-Shot 100 0 | DiscClose() 0
Suction Valve Close 940 | One-Shot 60 0 | SuctionClose() 0
1 0
2 0
3 0
10.01 Spoke# <INT8U>
This column contains the spoke number which can vary between 0 and
OS TMR CFG WHEEL SIZE-1. You should note that the value of

OS_TMR CFG WHEEL SIZE is stored in the ROM variable 0STmrCfgWheelSize.
This column also corresponds to the index ‘i” which is referenced in the next sub-sections.
10.02 #Timers <INT16U>

This column indicates the number of timers currently placed in the corresponding spoke. This
column is given by the following value:

#Timers = OSTmrWheelTbl[i] .OSTmrEntries;

10.03 Timer Name <ASCII string>

This column provides the name that was assigned to each timer when the timer was created (see
OSTmrCreate ()). Because there might be more than one timer entry per timer wheel spoke,
you need to scan the list of timers in each spoke and list the value of each timer on its own line as
follows:

0S TMR *p tmr;
p_tmr = OSTmrWheelTbl[i].O0STmrFirst;

while (p tmr != (OS TMR *)0) {
Display the name of the timer: p tmr->OSTmrName;

p_tmr = p tmr->0STmrNext;

Note that the timer name is a pointer to a NUL terminated ASCII string.

This variable ONLY exists if the variable 0OSTmrNameEn is set to 1 which is a ROM variable
declared in 0S_DBG. C.

10.04 Match <INT32U>
The timer task increments the value of 0OSTmrTime every time it’s executed. Each timer expires
when 0STmrTime matches the value of the . OSTmrMatch.

This column provides the name that was assigned to each timer when the timer was created (see
OSTmrCreate ()). Because there might be more than one timer entry per timer wheel spoke,
you need to scan the list of timers in each spoke and list the value of each timer on its own line as
follows:

0S TMR *p tmr;
p_tmr = OSTmrWheelTbl[i].OSTmrFirst;
while (p_tmr != (0S TMR *)0) {

Display the value of Match: p tmr->0STmrMatch;

p_tmr = p tmr->0STmrNext;

The value should be displayed in decimal format.

10.05 Option <INT8U>
A timer can be configured for periodic or one-shot. In periodic mode, the timer restarts
automatically after timing out. In one-shot the timer stops when the timer expires.

This column shows the mode for the timer and can be obtained as follows:

0S TMR *p tmr;

p_tmr = OSTmrWheelTbl[i].0STmrFirst;

while (p tmr != (OS TMR *)0) {
if (p_tmr->0STmrOpt == 1) {
Display “ONE-SHOT”;
} else {

Display “PERIODIC”

p_tmr = p tmr->0STmrNext;

10.06 Delay <INT32U>
Periodic mode can be started after waiting for a certain delay and is the value displayed in this
column.

0S TMR *p tmr;
p_tmr = OSTmrWheelTbl[i].OSTmrFirst;
while (p_tmr != (0S TMR *)0) {

Display the value of p tmr->0STmrDly;

p _tmr = p tmr->0STmrNext;

10.07 Period <INT32U>
The amount of time between reloads of the timer value is the period and is represented by this
value.

0S TMR *p tmr;

p_tmr = OSTmrWheelTbl[i].O0STmrFirst;
while (p tmr != (OS TMR *)0) {

Display the value of p tmr->0STmrPeriod;

p_tmr = p tmr->0STmrNext;

10.08 Callback <void (*OS_TMR_CALLBACK)(void *ptmr, void *parg)>
This column is used to display either the address of the function that the timer task will execute
when the timer expires or, better yet, the ‘name’ of that function.

0S TMR *p tmr;

p_tmr = OSTmrWheelTbl[i].OSTmrFirst;
while (p_tmr != (0S TMR *)0) {

Display the value of p tmr->0STmrCallback;

p_tmr = p tmr->0STmrNext;

10.09 CallbackArg <Hex address>
This column is used to display the argument that is passed to the callback function. It’s probably
best to display that value in hexadecimal.

0S TMR *p_tmr;
p_tmr = OSTmrWheelTbl[i].O0STmrFirst;
while (p _tmr != (OS _TMR *)0) {

Display the value of p tmr->0STmrCallbackArg;

p_tmr = p_ tmr->0STmrNext;

11.0 Memory Partitions
The kernel awareness semaphore list ONLY exists if OSMemEn is setto 1 (see OS_DBG. C).

Memory partitions are created by calling OSMemCreate () and when a memory partition is created, an
OS_MEM structure is assigned from a pool of 0S_MEMs.

To display the memory partition list, you will display 0SMemTb1 [] from O to OSMemTblSize /
OSMemSize - 1.

Each entry of the 0SMemTb1 [] look as shown below.

| - ry
pmem——p| osvenadar - addr 0"/'

OSMemFreeList= addr o]

[
0OSMemBlkSize = blksize
OSMemNBlks = nblks

[
OSMemNFree = nblks

Contiguous memory

0OSMemCreate() arguments

AL WAWLWAW,

.-
0
v
Example display:
Name | Ref | Avail | Used | #Blks | #Blks | #Blks Blk OS_MEM Starts
% % Avail Used Max Size @ @
(Bytes)
Rx Buf 0 90% | 10% 90 10 100 32 | 0x20000300 | 0x2001000
Tx Buf 1 12% | 88% 24 176 200 16 | 0x20000800 | 0x2001100
11.01 Name <ASCII string>

0SMemTbl [1] .0SMemName iS a pointer to a NUL terminated ASCII string. Note that this
field is not shown in the illustration above because it was added after the illustration was done.
This variable ONLY exists if the variable OSMemNameEn is set to 1 which is a ROM variable
declared in 0S_DBG. C.

11.02 Ref.
This corresponds to the index into 0SMemTb1 [] for the memory partition.

11.03 Avail% <INT8U>
This corresponds to the following value:

Avail% = 100 * OSMemTbl[i].OSMemNFree
/ OSMemTbl[i].0SMemNBlks;

11.04 Used% <INT8U>
This corresponds to the following value:
Used% = 100 * (OSMemTbl[i].OSMemNBlks - OSMemTbl[i1].0SMemNFree)

/ OSMemTbl[i].0OSMemNBlks;

11.05 #Blks Avail <INT16U>
This corresponds to the following value:

#Blks Avail = OSMemTbl[i].OSMemNFree;
11.06 #Blks Used <INT16U>
This corresponds to the following value:

#Blks Used = OSMemTbl[i].0SMemNBlks - OSMemTbl[i].OSMemNFree;
11.07 #Blks Max <INT16U>
This corresponds to the following value:

#Blks Max = OSMemTbl[i].0SMemNBlks;
11.08 BIk Size <INT16U>
This corresponds to the following value:

#Blk Size = OSMemTbl[i].OSMemBlkSize;
11.09 OS_MEM @ <Hex address>
This corresponds to the following value:

0S_MEM@ = &OSMemTbl[i];

11.10 Starts @ <Hex address>
This corresponds to the following value:

Starts @ = OSMemTbl[i] .OSMemAddr;

