
Micriµm

Copyright 2012 ©, All Rights Reserved

µC/OS-II
Kernel Awareness

www.micrium.com

Table of Contents

1.0 Introduction .. 5

2.0 General Status ... 6

2.1 OSRunning <BOOLEAN> .. 6

2.2 OSCPUUsage <INT8U> .. 6

2.3 OSTaskCtr <INT8U> ... 6

2.4 OSIdleCtr <INT32U> .. 6

2.5 OSCtxSwCtr <INT32U> .. 7

2.6 OSTmrTime <INT32U> .. 7

2.7 OSTmrUsed <INT16U> .. 7

2.8 OSTmrFree <INT16U> ... 7

2.9 OSVersionNumber <INT16U> ... 7

2.10 OSIntNesting <INT8U> .. 7

2.11 OSLockNesting <INT8U> ... 7

2.12 Step Mode ... 7

2.13 OSTime <INT32U> ... 8

3.0 Task List ... 9

3.01 .OSTCBTaskName <ASCII string> ... 10

3.02 Index into OSTCBTbl[] ... 10

3.03 .OSTCBPrio <INT8U> ... 10

3.04 .OSTCBStat <INT8U> ... 10

3.05 .OSTCBDly <INT32U> ... 10

3.06 .OSTCBEventPtr->OSEventName <ASCII string> ... 11

3.07 . OSTCBMsg <void *> .. 12

3.08 . OSTCBCtxSwCtr <INT32U> .. 12

3.09 . OSTCBStkPtr <OS_STK *> .. 12

3.10 Other Stack Data ... 12

4.0 Constants .. 13

5.0 Semaphore List.. 14

5.01 Name <ASCII string> .. 15

5.02 Ref. .. 15

5.03 Count <INT16U> .. 16

5.04 Tasks Waiting <ASCII string> ... 16

5.05 OS_EVENT @ <Hex address> .. 16

6.0 Mailbox List ... 17

6.01 Name <ASCII string> .. 18

6.02 Ref. .. 18

6.03 Msg <Hex address> ... 18

6.04 Tasks Waiting <ASCII string> .. 18

6.05 OS_EVENT @ <Hex address> .. 19

7.0 Message Queue List .. 20

7.01 Name <ASCII string> .. 21

7.02 Ref. .. 21

7.03 Entries <INT16U> .. 21

7.04 Size <INT16U> ... 21

7.05 Next Msg <void *> .. 22

7.06 Tasks Waiting <ASCII string> ... 22

7.07 OS_EVENT @ <Hex address> .. 22

7.08 OS_Q @ <Hex address> .. 22

8.0 Mutex List .. 23

8.01 Name <ASCII string> .. 24

8.02 Ref. .. 24

8.03 PIP:Owner <INT16U> .. 24

8.04 Tasks Waiting <ASCII string> ... 25

8.05 OS_EVENT @ <Hex address> .. 25

9.0 Event Flag List.. 26

9.01 Name <ASCII string> .. 26

9.02 Ref. .. 27

9.03 Flags <INT8U, INT16U or INT32U> .. 27

9.04 OS_FLAG_GRP @ <Hex address> .. 27

9.05 Tasks Waiting <ASCII string> ... 27

9.06 Wait Type <value -> ASCII string> ... 28

9.07 Waiting for Flags <binary> .. 28

10.0 Timer List ... 29

10.01 Spoke# <INT8U> ... 29

10.02 #Timers <INT16U> .. 29

10.03 Timer Name <ASCII string> .. 30

10.04 Match <INT32U> .. 30

10.05 Option <INT8U> ... 31

10.06 Delay <INT32U> .. 31

10.07 Period <INT32U> .. 32

10.08 Callback <void (*OS_TMR_CALLBACK)(void *ptmr, void *parg)> 32

10.09 CallbackArg <Hex address> .. 32

11.0 Memory Partitions .. 33

11.01 Name <INT8U *> .. 33

11.02 Ref. ... 33

11.03 Avail% <INT8U> .. 34

11.04 Used% <INT8U> .. 34

11.05 #Blks Avail <INT16U> ... 34

11.06 #Blks Used <INT16U> ... 34

11.07 #Blks Max <INT16U> .. 34

11.08 Blk Size <INT16U>... 34

11.09 OS_MEM @ <Hex address> ... 34

11.10 Starts @ <Hex address> ... 35

1.0 Introduction

This document describes the different variables that need to be displayed in order to implement ‘Kernel

Awareness’ for µC/OS-II. It is assumed that you have access to the source code for µC/OS-II

(downloadable from www.micrium.com) as well as the µC/OS-II book (ISBN 978-1-57820-103-7) which

is available from Amazon.com or other fine book stores.

In this document we will present ‘screen shots’. These are only provided as examples of what has

previously been done. However, you are free to implement the Kernel Awareness that best suits your

debug environment.

µC/OS-II performs substantial run-time statistics that can be displayed by kernel-aware debuggers and/or

µC/Probe. µC/OS-II also provides information about the configuration of the system. Specifically, the

amount of RAM used by µC/OS-II, including all internal variables and task stacks.

We will be using a Courier New font to represent variable or function names found in µC/OS-II.

Kernel Awareness actually only requires the reading and possibly writing of variables. Functions are

only mentioned as a reference.

Throughout the text in this document, you will see references in angular brackets about data types. These

are ‘compiler specific’ and, for ARM, are defined as follows:

/*

**

* DATA TYPES

* (Compiler Specific)

**

*/

typedef unsigned char BOOLEAN;

typedef unsigned char INT8U; /* Unsigned 8 bit quantity */

typedef signed char INT8S; /* Signed 8 bit quantity */

typedef unsigned short INT16U; /* Unsigned 16 bit quantity */

typedef signed short INT16S; /* Signed 16 bit quantity */

typedef unsigned int INT32U; /* Unsigned 32 bit quantity */

typedef signed int INT32S; /* Signed 32 bit quantity */

typedef float FP32; /* Single precision floating point */

typedef double FP64; /* Double precision floating point */

typedef unsigned int OS_STK; /* Each stack entry is 32-bit wide */

typedef unsigned int OS_CPU_SR; /* Define size of CPU status register */

‘ASCII string’ means that the value is a pointer to an ASCII string that is NUL terminated.

The information found in this document is assumed to be correct but is not guaranteed to be without

mistakes or omissions.

http://www.micrium.com/

2.0 General Status

2.1 OSRunning <BOOLEAN>
OSRunning is set to 1 when the kernel is running (multitasking has started) and 0 when not.

You can replace the value by a symbol and/or a text string as shown above.

2.2 OSCPUUsage <INT8U>
OSCPUUsage contains CPU usage in 1% increment (0 to 100). The ‘%’ is added in the

formatting. This variable ONLY exists if the variable OSTaskStatEn is set to 1 which is a

ROM variable declared in OS_DBG.C.

2.3 OSTaskCtr <INT8U>
OSTaskCtr indicates the total number of tasks created in the application. This includes the idle

task and statistic task (if enabled).

2.4 OSIdleCtr <INT32U>
OSIdleCtr increments whenever µC/OS-II is in the idle task. OSIdleCtr is reset every 100 ms

by OS_TaskStat().

OSCtxSwCtr

OSIdleCtr

OSTaskCtr

OSCPUUsage

OSRunning

OSVersionNbr

Vx.yy.zz

OSIntNesting

OSLockNesting

OSTime

UNUSED

OSTmrTime

OSTmrUsed

OSTmrFree

2.5 OSCtxSwCtr <INT32U>
OSCtxSwCtr increments whenever µC/OS-II performs a context switch. When OSCtxSwCtr

overflows, it goes back to 0.

2.6 OSTmrTime <INT32U>
OSTmrTime is incremented by OSTmr_Task() which typically executes every 100 ms.

When OSTmrTime overflows, it goes back to 0. This variable ONLY exists if the variable

OSTmrEn is set to 1 which is a ROM variable declared in OS_DBG.C.

2.7 OSTmrUsed <INT16U>
OSTmrUsed indicates how many timers are actually in use (created). This variable ONLY

exists if the variable OSTmrEn is set to 1 which is a ROM variable declared in OS_DBG.C.

2.8 OSTmrFree <INT16U>
OSTmrFree indicates how many timers are available from the timer pool. This variable ONLY

exists if the variable OSTmrEn is set to 1 which is a ROM variable declared in OS_DBG.C.

2.9 OSVersionNumber <INT16U>
OSVersionNbr is a 16-bit value and represents the version number as ‘xyyzz’. When

displaying, you should separate the fields using decimal points, i.e. x.yy.zz.

2.10 OSIntNesting <INT8U>
OSIntNesting indicates the level of interrupt nesting. If this value is 2, for example, this

indicates that an interrupt was interrupted by another interrupt.

2.11 OSLockNesting <INT8U>
OSLockNesting indicates the number of times OSSchedLock() has been called. When

OSLockNesting is greater than 0 then the scheduler is locked and rescheduling will not occur

until OSLockNesting is decremented back to 0 by calling OSSchedUnlock(). Note that

OSTaskDel() also increments OSLockNesting for a brief instant to prevent rescheduling

while deleting a task.

2.12 Step Mode
This functionality has been removed.

2.13 OSTime <INT32U>
OSTime is the tick counter and is incremented by OSTimeTick(). When OSTime overflows,

it goes back to 0.

3.0 Task List
The task list shows the contents of each task’s TCB (Task Control Block). Each task is assigned a TCB

when the task is created. TCBs are assigned by the kernel from a pool of TCBs. There are OSTaskMax

entries in the TCB pool. When a task is deleted, the TCB of that task is returned to the TCB pool. The

pool consist of a linked list created from the entries in OSTCBTbl[].

You don’t actually need to access the linked list. Instead, you index into OSTCBTbl[] from 0 to

OSTaskCtr-1.

(char *)(OSTCBTbl[i].OSTCBTaskName)

Index into OSTCBTbl[]

(INT8U)(OSTCBTbl[i].OSTCBPrio)

(INT8U)(OSTCBTbl[i].OSTCBStat)

(INT32U)OSTCBTbl[i].OSTCBDly

(char *)(OSTCBTbl[i].OSTCBEventPtr->OSEventName)

(void *)(OSTCBTbl[i].OSTCBMsg)

(INT32U)(OSTCBTbl[i].OSTCBCtxSwCtr)

(OS_STK *)(OSTCBTbl[i].OSTCBStkPtr)

See below

3.01 .OSTCBTaskName <ASCII string>
OSTCBTbl[i].OSTCBTaskName is a pointer to a NUL terminated ASCII string. This

variable ONLY exists if the variable OSTaskNameEn is set to 1 which is a ROM variable

declared in OS_DBG.C.

3.02 Index into OSTCBTbl[]
The value of ‘i’ above references an entry in OSTCBTbl[]. The task list will contain at most

OSTaskCtr entries numbered 0 to OSTaskCtr-1.

3.03 .OSTCBPrio <INT8U>
OSTCBTbl[i].OSTCBPrio indicates the priority of the task. A low number indicates a high

priority.

3.04 .OSTCBStat <INT8U>
OSTCBTbl[i].OSTCBStat is the current state of the task:

0x00 Ready

0x01 Pending on Semaphore

0x02 Pending on Mailbox

0x04 Pending on Message Queue

0x08 Suspended

0x10 Pending on Mutex

0x20 Pending on Event Flags

0x40

0x80 Pending on multiple events

0x09 Pending on Semaphore and Suspended

0x0A Pending on Mailbox and Suspended

0x0C Pending on Message Queue and Suspended

0x18 Pending on Mutex and Suspended

0x28 Pending on Event Flags and Suspended

3.05 .OSTCBDly <INT32U>
OSTCBTbl[i].OSTCBDly indicates whether a task is waiting for a timeout or is simply

suspended waiting for time to expire. If any of the bits in OSTCBTbl[i].OSTCBStat (except

0x08) is set then the task is waiting for an event and OSTCBTbl[i].OSTCBDly specifies the

timeout.

If OSTCBTbl[i].OSTCBStat is 0x00 (i.e. Ready) but OSTCBTbl[i].OSTCBDly is non-

zero then the task is actually ‘sleeping’ and will wake up when the time delay reaches 0 or, the

time delay has been cancelled by calling OSTimeDlyResume().

3.06 .OSTCBEventPtr->OSEventName <ASCII string>
OSTCBTbl[i].OSTCBEventPtr->OSEventName is a pointer to an ASCII string that

contains the name of the event the task is waiting on, assuming the task is waiting for a

Semaphore, a Mailbox, a Message Queue, an Event Flag Group or a Mutex. The first byte where

OSTCBTbl[i]->OSTCBEventPtr is pointing at tells you whether the data structure being

pointed to is an OS_EVENT (Semaphore, a Mailbox, a Message Queue or a Mutex) or an

OS_FLAG_GRP (Event Flags).

This variable ONLY exists if the variable OSEventNameEn is set to 1 which is a ROM variable

declared in OS_DBG.C.

So:

Value of:
*(INT8U *)(OSTCBTbl[i]->OSTCBEventPtr)

Event Type Use

Data Type

0 Unused N/A

1 Mailbox OS_EVENT

2 Message Queue OS_EVENT

3 Semaphore OS_EVENT

4 Mutex OS_EVENT

5 Event Flag OS_FLAG_GRP

From the value above, you are able to access the ASCII name as follows:

Value is 1, 2, 3 or 4:

OSTCBTbl[i]->OSTCBEventPtr->OSEventName

Value is 5:

A) This is a bit more complex. First, you need to obtain the address (i.e. a pointer to) of the

OS_FLAG_NODE from the TCB:

(OS_FLAG_NODE *)OSTCBTbl[i]->OSTCBFlagNode

B) Then, from this pointer, get the address of the event flag group:

(OS_FLAG_GRP *)FlagNodePtr->OSFlagNodeFlagGrp

C) Then, from this pointer, get the address of the ASCII string:

(char *)FlagGrpPtr->OSFlagName

3.07 . OSTCBMsg <void *>
OSTCBTbl[i].OSTCBMsg contains a pointer to the last message received. This field

contains a NULL pointer whenever the message is delivered to the waiting task. This variable

ONLY exists if the at least ONE of the following variables is set to 1: OSQEn or OSMboxEn.

These are declared in OS_DBG.C.

3.08 . OSTCBCtxSwCtr <INT32U>
OSTCBTbl[i].OSTCBCtxSwCtr indicates the number of times a task has been switched in.

When 0, it indicates that a task has not executed yet. This variable ONLY exists if the variable

OSTaskProfileEn is set to 1 which is a ROM variable declared in OS_DBG.C.

3.09 . OSTCBStkPtr <OS_STK *>
OSTCBTbl[i].OSTCBStkPtr is a pointer to the top-of-stack of each task. Recall that with

µC/OS-II, the stack frame pointed to by OSTCBTbl[i].OSTCBStkPtr looks as if an interrupt

just occurred and the CPU registers were pushed onto the task’s stack. This is true for all tasks

except the current task that is executing. In this case, the CPU’s stack pointer points to the

current stack frame and the OSTCBTbl[i].OSTCBStkPtr entry points to the stack frame

when the task was last suspended. However, there is little value to the programmer for this

information.

3.10 Other Stack Data
The next seven columns are provided to display stack usage data.

Max% = OSTCBTbl[i].OSTCBStkUsed * 100

 / OSTCBTbl[i].OSTCBStkSize;

Cur% = No longer used

Max = OSTCBTbl[i].OSTCBStkUsed;

Size = OSTCBTbl[i].OSTCBStkSize;

Starts @ = OSTCBTbl[i].OSTCBStkBottom

 + OSTCBTbl[i].OSTCBStkSize;

Ends @ = OSTCBTbl[i].OSTCBStkBottom;

4.0 Constants
The file OS_DBG.C provides information about the RAM usage of µC/OS-II as shown below. All values

are INT16U except for OSEndiannessTest which is a 32 bit value.

OSEndiannessTest is a variable that can be examined to determine whether the CPU is a big or little

endian machine. If the byte found at the base address of OSEndiannessTest is 0x12 then the CPU is

a little endian machine. If the value is 0x78 then it’s a big endian machine.

OSDataSize indicates the total RAM size used by µC/OS-II which includes the RAM needed for the

idle and statistics task stacks.

5.0 Semaphore List
The kernel awareness semaphore list ONLY exists if OSSemEn is set to 1 (see OS_DBG.C).

Semaphores are created by calling OSSemCreate() and when a semaphore is created, an OS_EVENT

structure is assigned from a pool of OS_EVENTs. You should note that an OS_EVENT is also used to

store a mailbox, queue or mutex. To distinguish between these different events, the first byte of an

OS_EVENT specifies the event type:

Event Type Value of .OSEventType

Unused 0

Mailbox 1

Queue 2

Semaphore 3

Mutex 4

Event Flag 5

The OS_EVENT structure as used by semaphores is shown below:

The bitmap represented by .OSEventTbl[] indicates which task is waiting for the semaphore. A 1 in

the bitmap indicates that a task (at the priority corresponding to the bit position) is waiting for the

semaphore. For example, if bit 3 in .OSEventTbl[0] is set to 1 then, task at priority 3 is waiting for

the semaphore. As of V2.80, µC/OS-II supports up to 255 tasks and thus the above 8x8 table can actually

be a 16x16 table as shown below. The variable ‘OSLowestPrio’ can be read by the debugger to

determine whether .OSEventTbl[] contains INT8U or INT16U entries.

To display the semaphore list, you will need to scan the OSEventTbl[] and display the contents of the

OSEventTbl[] for those entries that have OSEventTbl[i].OSEventType equal to 3. Note that

.OSEventType is an INT8U.

Example display:

Name Ref Count Tasks Waiting OS_EVENT @

Create Sem 5 0 - 0x20000078

Serial Lock 4 1 - 0x20000060

Serial Rx Wait 3 0 - 0x20000048

Serial Tx Wait 2 0 - 0x20000030

uC/OS-II TmrLock 0 1 - 0x20000000

uC/OS-II Tmr Signal 1 0 61-uC/OS-II Tmr 0x20000018

5.01 Name <ASCII string>
OSEventTbl[i].OSEventName is a pointer to a NUL terminated ASCII string. Note that

this field is not shown in the illustration above because it was added after the illustration was

done. This variable ONLY exists if the variable OSEventNameEn is set to 1 which is a ROM

variable declared in OS_DBG.C.

5.02 Ref.
This corresponds to the index into OSEventTbl[] for the semaphore.

HPT (0)

LPT (254)

NEVER used,

OS_PRIO_SELF

HPT (0)

LPT (63)

OSEventTbl[]

8x8 Max.

.OSEventTbl[]

16x16 Max.

OS_LOWEST_PRIO <= 63 OS_LOWEST_PRIO > 63

0 15

0 7

5.03 Count <INT16U>
This entry corresponds to the semaphore count value (a 16-bit value) and is found in

OSEventTbl[i].OSEventCnt.

5.04 Tasks Waiting <ASCII string>
There are two methods you can use to determine which tasks are waiting for the semaphore.

1) You can scan the OSTCBTbl[] and find which OSTCBTbl[j].OSTCBEventPtr points

to the OSEventTbl[] entry you are displaying. In other words, assuming that ‘i’

corresponds to the current OSEventTbl[] entry and ‘j’ to the scanned TCB table:

for (j = 0; j < OSTaskCtr; j++) {

 if (OSTCBTbl[j].OSTCBEventPtr == &OSEventTbl[i]) {

 Print the name of the task (i.e. OSTCBTbl[j].OSTCBTaskName)

 }

}

2) You can also scan the .OSEventTbl[] and find which bit are set in the table. The bit

position corresponds to the task priority that is waiting for the semaphore. From this, you can

use the priority number to index into OSTCBTbl[] and determine the name of the task

waiting for the semaphore (i.e. OSTCBTbl[prio].OSTCBTaskName).

You should note that in the ‘Task Waiting’ column, you could add the task priority in front of the

task name as shown: “prio–task name”. The task priority is obtained by

OSTCBTbl[j].OSTCBPrio.

This variable ONLY exists if the variable OSTaskNameEn is set to 1 which is a ROM variable

declared in OS_DBG.C.

5.05 OS_EVENT @ <Hex address>
This corresponds to the address of the OSEventTbl[] entry, i.e. &OSEventTbl[i].

6.0 Mailbox List
The kernel awareness mailbox list ONLY exists if OSMboxEn is set to 1 (see OS_DBG.C).

Mailboxes are created by calling OSMboxCreate() and when a mailbox is created, an OS_EVENT

structure is assigned from a pool of OS_EVENTs. You should note that an OS_EVENT is also used to

store a semaphore, queue or mutex. To distinguish between these different events, the first byte of an

OS_EVENT specifies the event type:

Event Type Value of .OSEventType

Unused 0

Mailbox 1

Queue 2

Semaphore 3

Mutex 4

Event Flag 5

The OS_EVENT structure as used to hold a mailbox object is shown below.

To display the mailbox, you will need to scan the OSEventTbl[] and display the contents of the

OSEventTbl[] for those entries that have OSEventTbl[i].OSEventType equal to 1. Note that

.OSEventType is an INT8U.

Example display:

Name Ref Msg Tasks Waiting OS_EVENT @

UART Rx Mbx 6 0 16-UART Rx Task 0x20000090

UART Tx Mbx 7 0x200010F0 - 0x200000A8

6.01 Name <ASCII string>
OSEventTbl[i].OSEventName is a pointer to a NUL terminated ASCII string. Note that

this field is not shown in the illustration above because it was added after the illustration was

done. This variable ONLY exists if the variable OSEventNameEn is set to 1 which is a ROM

variable declared in OS_DBG.C.

6.02 Ref.
This corresponds to the index into OSEventTbl[] for the mailbox.

6.03 Msg <Hex address>
This entry corresponds to the content of the mailbox. The mailbox is empty when this field

contains a NULL pointer. Any non-NULL pointer corresponds to a message that was posted to

the mailbox. The message is placed in the OSEventTbl[i].OSEventPtr field.

6.04 Tasks Waiting <ASCII string>
There are two methods you can use to determine which tasks are waiting for the mailbox.

1) You can scan the OSTCBTbl[] and find which OSTCBTbl[j].OSTCBEventPtr points

to the OSEventTbl[] entry you are displaying. In other words, assuming that ‘i’

corresponds to the current OSEventTbl[] entry and ‘j’ to the scanned TCB table:

for (j = 0; j < OSTaskCtr; j++) {

 if (OSTCBTbl[j].OSTCBEventPtr == &OSEventTbl[i]) {

 Print the name of the task (i.e. OSTCBTbl[j].OSTCBTaskName)

 }

}

2) You can also scan the .OSEventTbl[] and find which bit are set in the table. The bit

position corresponds to the task priority that is waiting for the mailbox. From this, you can

use the priority number to index into OSTCBTbl[] and determine the name of the task

waiting for the mailbox (i.e. OSTCBTbl[prio].OSTCBTaskName).

You should note that in the ‘Task Waiting’ column, you could add the task priority in front of the

task name as shown: “prio–task name”. The task priority is obtained by

OSTCBTbl[j].OSTCBPrio.

This variable ONLY exists if the variable OSTaskNameEn is set to 1 which is a ROM variable

declared in OS_DBG.C.

6.05 OS_EVENT @ <Hex address>
This corresponds to the address of the OSEventTbl[] entry, i.e. &OSEventTbl[i].

7.0 Message Queue List
The kernel awareness message queue list ONLY exists if OSQEn is set to 1 (see OS_DBG.C).

Message queues are created by calling OSQCreate() and when a queue is created, an OS_EVENT

structure is assigned from a pool of OS_EVENTs. You should note that an OS_EVENT is also used to

store a semaphore, mailbox or mutex. To distinguish between these different events, the first byte of an

OS_EVENT specifies the event type:

Event Type Value of .OSEventType

Unused 0

Mailbox 1

Queue 2
Semaphore 3

Mutex 4

Event Flag 5

A message queue actually uses another data structure (OS_Q) which is allocated at the same time as the

OS_EVENT structure. This is because an OS_EVENT doesn’t contain all the fields needed to implement

a message queue. The OS_Q data structure is pointed to by .OSEventPtr when the queue is created.

The OS_EVENT and OS_Q structures are shown below.

To display the mailbox, you will need to scan the OSEventTbl[] and display the contents of the

OSEventTbl[] for those entries that have OSEventTbl[i].OSEventType equal to 2. Note that

.OSEventType is an INT8U.

Example display:

Name Ref Entries Size Next

Msg

Tasks

Waiting

OS_EVENT

@

OS_Q

@
UART Rx Q 8 5 10 0x20001000 - 0x200000C0 0x20001000

UART Tx Q 9 0 20 0x200010F0 15-UART Tx 0x200000D8 0x20001020

PID Ctrl 10 0 8 - 10-PID 1 0x200000E0 0x20001040

 11-PID 2

 13-PID 4

7.01 Name <ASCII string>
OSEventTbl[i].OSEventName is a pointer to a NUL terminated ASCII string. Note that

this field is not shown in the illustration above because it was added after the illustration was

done. This variable ONLY exists if the variable OSEventNameEn is set to 1 which is a ROM

variable declared in OS_DBG.C.

7.02 Ref.
This corresponds to the index into OSEventTbl[] for the message queue.

7.03 Entries <INT16U>
This entry corresponds to the number of messages currently placed in the message queue. To

access this field you need to obtain the address of the OS_Q structure as follows:

OS_Q *p_q;

p_q = (OS_Q *)OSEventTbl[i].OSEventPtr;

Entries = p_q->OSQEntries;

7.04 Size <INT16U>
This entry corresponds to the maximum number of messages that can be placed in the message

queue. To access this field you need to obtain the address of the OS_Q structure as follows:

OS_Q *p_q;

p_q = (OS_Q *)OSEventTbl[i].OSEventPtr;

Size = p_q->OSQSize;

7.05 Next Msg <void *>
This entry corresponds to the next message that will be extracted from the message queue.

OS_Q *p_q;

void *p_msg

p_q = (OS_Q *)OSEventTbl[i].OSEventPtr;

NextMsg = *p_q->OSQOut;

7.06 Tasks Waiting <ASCII string>
There are two methods you can use to determine which tasks are waiting for the message queue.

1) You can scan the OSTCBTbl[] and find which OSTCBTbl[j].OSTCBEventPtr points

to the OSEventTbl[] entry you are displaying. In other words, assuming that ‘i’

corresponds to the current OSEventTbl[] entry and ‘j’ to the scanned TCB table:

for (j = 0; j < OSTaskCtr; j++) {

 if (OSTCBTbl[j].OSTCBEventPtr == &OSEventTbl[i]) {

 Print the name of the task (i.e. OSTCBTbl[j].OSTCBTaskName)

 }

}

2) You can also scan the .OSEventTbl[] and find which bit are set in the table. The bit

position corresponds to the task priority that is waiting for the message queue. From this, you

can use the priority number to index into OSTCBTbl[] and determine the name of the task

waiting for the message queue (i.e. OSTCBTbl[prio].OSTCBTaskName).

You should note that in the ‘Task Waiting’ column, you could add the task priority in front of the

task name as shown: “prio–task name”. The task priority is obtained by

OSTCBTbl[j].OSTCBPrio.

This variable ONLY exists if the variable OSTaskNameEn is set to 1 which is a ROM variable

declared in OS_DBG.C.

7.07 OS_EVENT @ <Hex address>
This corresponds to the address of the OSEventTbl[] entry, i.e. &OSEventTbl[i].

7.08 OS_Q @ <Hex address>
This corresponds to the address of the OS_Q used by the message queue and corresponds to:

OSEventTbl[i].OSEventPtr.

8.0 Mutex List
The kernel awareness mutex list ONLY exists if OSMutexEn is set to 1 (see OS_DBG.C).

Mutexes are created by calling OSMutexCreate() and when a mutex is created, an OS_EVENT

structure is assigned from a pool of OS_EVENTs. You should note that an OS_EVENT is also used to

store a mailbox, queue or semaphore. To distinguish between these different events, the first byte of an

OS_EVENT specifies the event type:

Event Type Value of .OSEventType

Unused 0

Mailbox 1

Queue 2

Semaphore 3

Mutex 4
Event Flag 5

The OS_EVENT structure (as used for Mutexes) is shown below:

To display the mutex list, you will need to scan the OSEventTbl[] and display the contents of the

OSEventTbl[] for those entries that have OSEventTbl[i].OSEventType equal to 4. Note that

.OSEventType is an INT8U.

Example display:

Name Ref PIP:Owner Tasks Waiting OS_EVENT

@
Display Mutex 11 20:25 26-User I/F Task 0x200000F8

 27-Line Draw Task

 28-Temperature Update Task

 33-Pressure Update Task

SPI Mutex 12 10:Avail - 0x20000110

8.01 Name <ASCII string>
OSEventTbl[i].OSEventName is a pointer to a NUL terminated ASCII string. Note that

this field is not shown in the illustration above because it was added after the illustration was

done. This variable ONLY exists if the variable OSEventNameEn is set to 1 which is a ROM

variable declared in OS_DBG.C.

8.02 Ref.
This corresponds to the index into OSEventTbl[] for the mutex.

8.03 PIP:Owner <INT16U>
This entry contains two fields. The lower 8 bits contains either the priority of the owner task or

0xFF. The mutex is available when 0xFF and, the lower 8 bits contains the priority of the owner

when a task acquires the mutex.

The upper 8 bits contains the ‘priority ceiling’ priority. In other words, if a low priority task

owns the mutex and a higher priority task needs to access the shared resource then the low

priority task will get its priority raised to the ‘priority ceiling’ priority in order to reduce priority

inversions.

This column should indicate:

PIP = OSEventTbl[i].OSEventCnt >> 8;

If ((OSEventTbl[i].OSEventCnt & 0xFF) == 0xFF)

 Display “PIP:Avail”

Else

 Display “PIP:prio” // prio is the value of (in decimal)

 // OSEventTbl[i].OSEventCnt & 0xFF

8.04 Tasks Waiting <ASCII string>
There are two methods you can use to determine which tasks are waiting for the mutex.

1) You can scan the OSTCBTbl[] and find which OSTCBTbl[j].OSTCBEventPtr points

to the OSEventTbl[] entry you are displaying. In other words, assuming that ‘i’

corresponds to the current OSEventTbl[] entry and ‘j’ to the scanned TCB table:

for (j = 0; j < OSTaskCtr; j++) {

 if (OSTCBTbl[j].OSTCBEventPtr == &OSEventTbl[i]) {

 Print the name of the task (i.e. OSTCBTbl[j].OSTCBTaskName)

 }

}

2) You can also scan the .OSEventTbl[] and find which bit are set in the table. The bit

position corresponds to the task priority that is waiting for the mutex. From this, you can use

the priority number to index into OSTCBTbl[] and determine the name of the task waiting

for the mutex (i.e. OSTCBTbl[prio].OSTCBTaskName).

This variable ONLY exists if the variable OSTaskNameEn is set to 1 which is a ROM variable

declared in OS_DBG.C.

8.05 OS_EVENT @ <Hex address>
This corresponds to the address of the OSEventTbl[] entry, i.e. &OSEventTbl[i].

9.0 Event Flag List
The kernel awareness event flag list ONLY exists if OSFlagEn is set to 1 (see OS_DBG.C).

Event flags are created by calling OSFlagCreate() and when an event flag is created, an

OS_FLAG_GRP structure is assigned from a pool of OS_FLAG_GRPs.

To display the event flag list, you will need to scan a linked list of items (see Figure 9.2 of the µC/OS-II

book, replicated here) and display multiple ‘lines’ based on the length of the list.

The following sub-section explains what each of the columns in the display above should contain.

Example display:

Name Ref Flags OS_FLAG_GRP

@

Tasks

Waiting

Wait

Type

Waiting

for Flags
Engine Flags 0 1100 1001 0x20000200 39-RPM Calc Task AND 0000 0010

 40-Timing Angle Task OR 0010 0100

 47-Air Manifold Pres OR 0001 0100

9.01 Name <ASCII string>
OSEventTbl[i].OSEventName is a pointer to a NUL terminated ASCII string. Note that

this field is not shown in the illustration above because it was added after the illustration was

done. This variable ONLY exists if the variable OSFlagNameEn is set to 1 which is a ROM

variable declared in OS_DBG.C.

9.02 Ref.
This corresponds to the index into OSFlagTbl[] for the event flag.

9.03 Flags <INT8U, INT16U or INT32U>
This entry contains the current state of each of the event flags in the event flag group. This filed

is either 8, 16 or 32 bit wide depending on the value of a configuration constant. You can

examine the variable ‘OSFlagWidth’ which will indicate the number of bytes (i.e. 1, 2 or 4).

The value to display in this column is obtained by: OSFlagTbl[i].OSFlagFlags. This

field should be displayed in binary format. Because of the difficulty in reading long bit strings,

it’s preferable to separate nibbles:

 8 Bits: xxxx xxxx

16 Bits: xxxx xxxx : xxxx xxxx

32 Bits: xxxx xxxx : xxxx xxxx : xxxx xxxx : xxxx xxxx

Note how colons are used to separate 8 bit portions for readability.

9.04 OS_FLAG_GRP @ <Hex address>
This corresponds to the address of the OSFlagTbl[] entry, i.e. &OSFlagTbl[i].

9.05 Tasks Waiting <ASCII string>
In order to display the list of tasks waiting for the event flag group, you will need to go through

the linked list of OS_FLAG_NODE. You proceed as follows:

1) You read the pointer to the beginning of the list: OSFlagTbl[i].OSFlagWaitList

(we’ll call this p_node). If this is NOT a NULL pointer then you follow the linked list of

OS_FLAG_NODE until you encounter a NULL pointer.

2) For each entry of OS_FLAG_NODE you can obtain the name of the waiting task by getting

the address of the TCB from using p_node->OSFlagNodeTCB (we’ll call this p_tcb).

3) The name of the task waiting is then obtained by accessing p_tcb->OSTCBName.

This variable ONLY exists if the variable OSTaskNameEn is set to 1 which is a ROM variable

declared in OS_DBG.C.

9.06 Wait Type <value -> ASCII string>
This field indicates whether the task is waiting for any of the bits to be set or cleared or, for all the

bits to be set or cleared.

In order to display the list of tasks waiting for the event flag group, you will need to go through

the linked list of OS_FLAG_NODE. You proceed as follows:

1) You read the pointer to the beginning of the list: OSFlagTbl[i].OSFlagWaitList

(we’ll call this p_node). If this is NOT a NULL pointer then you follow the linked list of

OS_FLAG_NODE until you encounter a NULL pointer.

2) For each entry of OS_FLAG_NODE you can obtain the wait type of the waiting task by

accessing the p_node->OSFlagNodeWaitType and display this as follows:

Value of .OSFlagNodeWaitType Display value

0 “Wait for ALL 0”

1 “Wait for ANY 0”

2 “Wait for ALL 1”

3 “Wait for ANY 1”

9.07 Waiting for Flags <binary>
This field indicates which event flags the task is waiting for.

In order to display the list of tasks waiting for the event flag group, you will need to go through

the linked list of OS_FLAG_NODE. You proceed as follows:

1) You read the pointer to the beginning of the list: OSFlagTbl[i].OSFlagWaitList

(we’ll call this p_node). If this is NOT a NULL pointer then you follow the linked list of

OS_FLAG_NODE until you encounter a NULL pointer.

2) For each entry of OS_FLAG_NODE you can obtain the flags that the task is waiting for by

accessing the p_node->OSFlagNodeFlags and display this as follows, preferably in

binary format. Because of the difficulty in reading long bit strings, it’s preferable to separate

nibbles with spaces and 8 bit quantities with ‘:’:

 8 Bits: xxxx xxxx

16 Bits: xxxx xxxx : xxxx xxxx

32 Bits: xxxx xxxx : xxxx xxxx : xxxx xxxx : xxxx xxxx

10.0 Timer List
The kernel awareness timer list ONLY exists if OSTmrEn is set to 1 (see OS_DBG.C).

µC/OS-II implements software based timers allowing periodic or one-shot events to occur. Timers were

added in V2.83. The application can have any number of timers (limited by RAM). The resolution of

timers is typically set to 1/10 sec. Timers are managed by a ‘timer task’ (OSTmr_Task() which is

found in OS_TMR.C).

An optional callback function can be executed when a timer expires.

In order to distribute the work done by the timer task, the management of timers is implemented using a

‘timer wheel’. Each ‘spoke’ of the timer wheel contains timers to be updated. The actual spoke where a

timer is inserted depends on the expected expiration time of the timer. The size of the timer wheel is set

at configuration time (OS_CFG.H) and typically, the size is set to a prime number.

To display the timer list, you will need to scan a linked list of items at each spoke.

Example display:

Spoke# #Timers TimerName Match Option Delay Period Callback Callback

Arg
0 2 Disc Valve Open 1000 One-Shot 100 0 DiscClose() 0

 Suction Valve Close 940 One-Shot 60 0 SuctionClose() 0

1 0

2 0

3 0

10.01 Spoke# <INT8U>
This column contains the spoke number which can vary between 0 and

OS_TMR_CFG_WHEEL_SIZE-1. You should note that the value of

OS_TMR_CFG_WHEEL_SIZE is stored in the ROM variable OSTmrCfgWheelSize.

This column also corresponds to the index ‘i’ which is referenced in the next sub-sections.

10.02 #Timers <INT16U>
This column indicates the number of timers currently placed in the corresponding spoke. This

column is given by the following value:

#Timers = OSTmrWheelTbl[i].OSTmrEntries;

10.03 Timer Name <ASCII string>
This column provides the name that was assigned to each timer when the timer was created (see

OSTmrCreate()). Because there might be more than one timer entry per timer wheel spoke,

you need to scan the list of timers in each spoke and list the value of each timer on its own line as

follows:

OS_TMR *p_tmr;

p_tmr = OSTmrWheelTbl[i].OSTmrFirst;

while (p_tmr != (OS_TMR *)0) {

 Display the name of the timer: p_tmr->OSTmrName;

 :

 :

 p_tmr = p_tmr->OSTmrNext;

}

Note that the timer name is a pointer to a NUL terminated ASCII string.

This variable ONLY exists if the variable OSTmrNameEn is set to 1 which is a ROM variable

declared in OS_DBG.C.

10.04 Match <INT32U>
The timer task increments the value of OSTmrTime every time it’s executed. Each timer expires

when OSTmrTime matches the value of the .OSTmrMatch.

 This column provides the name that was assigned to each timer when the timer was created (see

OSTmrCreate()). Because there might be more than one timer entry per timer wheel spoke,

you need to scan the list of timers in each spoke and list the value of each timer on its own line as

follows:

OS_TMR *p_tmr;

p_tmr = OSTmrWheelTbl[i].OSTmrFirst;

while (p_tmr != (OS_TMR *)0) {

 :

 :

 Display the value of Match: p_tmr->OSTmrMatch;

 :

 :

 p_tmr = p_tmr->OSTmrNext;

}

The value should be displayed in decimal format.

10.05 Option <INT8U>
A timer can be configured for periodic or one-shot. In periodic mode, the timer restarts

automatically after timing out. In one-shot the timer stops when the timer expires.

This column shows the mode for the timer and can be obtained as follows:

OS_TMR *p_tmr;

p_tmr = OSTmrWheelTbl[i].OSTmrFirst;

while (p_tmr != (OS_TMR *)0) {

 :

 :

 if (p_tmr->OSTmrOpt == 1) {

 Display “ONE-SHOT”;

 } else {

 Display “PERIODIC”

 }

 :

 :

 p_tmr = p_tmr->OSTmrNext;

}

10.06 Delay <INT32U>
Periodic mode can be started after waiting for a certain delay and is the value displayed in this

column.

OS_TMR *p_tmr;

p_tmr = OSTmrWheelTbl[i].OSTmrFirst;

while (p_tmr != (OS_TMR *)0) {

 :

 :

 Display the value of p_tmr->OSTmrDly;

 :

 :

 p_tmr = p_tmr->OSTmrNext;

}

10.07 Period <INT32U>
The amount of time between reloads of the timer value is the period and is represented by this

value.

OS_TMR *p_tmr;

p_tmr = OSTmrWheelTbl[i].OSTmrFirst;

while (p_tmr != (OS_TMR *)0) {

 :

 :

 Display the value of p_tmr->OSTmrPeriod;

 :

 :

 p_tmr = p_tmr->OSTmrNext;

}

10.08 Callback <void (*OS_TMR_CALLBACK)(void *ptmr, void *parg)>
This column is used to display either the address of the function that the timer task will execute

when the timer expires or, better yet, the ‘name’ of that function.

OS_TMR *p_tmr;

p_tmr = OSTmrWheelTbl[i].OSTmrFirst;

while (p_tmr != (OS_TMR *)0) {

 :

 :

 Display the value of p_tmr->OSTmrCallback;

 :

 :

 p_tmr = p_tmr->OSTmrNext;

}

10.09 CallbackArg <Hex address>
This column is used to display the argument that is passed to the callback function. It’s probably

best to display that value in hexadecimal.

OS_TMR *p_tmr;

p_tmr = OSTmrWheelTbl[i].OSTmrFirst;

while (p_tmr != (OS_TMR *)0) {

 :

 :

 Display the value of p_tmr->OSTmrCallbackArg;

 :

 :

 p_tmr = p_tmr->OSTmrNext;

}

11.0 Memory Partitions
The kernel awareness semaphore list ONLY exists if OSMemEn is set to 1 (see OS_DBG.C).

Memory partitions are created by calling OSMemCreate() and when a memory partition is created, an

OS_MEM structure is assigned from a pool of OS_MEMs.

To display the memory partition list, you will display OSMemTbl[] from 0 to OSMemTblSize /

OSMemSize – 1.

Each entry of the OSMemTbl[] look as shown below.

Example display:

Name Ref Avail

%

Used

%

#Blks

Avail

#Blks

Used

#Blks

Max

Blk

Size

(Bytes)

OS_MEM

@

Starts

@

Rx Buf 0 90% 10% 90 10 100 32 0x20000300 0x2001000

Tx Buf 1 12% 88% 24 176 200 16 0x20000800 0x2001100

11.01 Name <ASCII string>
OSMemTbl[i].OSMemName is a pointer to a NUL terminated ASCII string. Note that this

field is not shown in the illustration above because it was added after the illustration was done.

This variable ONLY exists if the variable OSMemNameEn is set to 1 which is a ROM variable

declared in OS_DBG.C.

11.02 Ref.
This corresponds to the index into OSMemTbl[] for the memory partition.

11.03 Avail% <INT8U>
This corresponds to the following value:

Avail% = 100 * OSMemTbl[i].OSMemNFree

 / OSMemTbl[i].OSMemNBlks;

11.04 Used% <INT8U>
This corresponds to the following value:

Used% = 100 * (OSMemTbl[i].OSMemNBlks - OSMemTbl[i].OSMemNFree)

 / OSMemTbl[i].OSMemNBlks;

11.05 #Blks Avail <INT16U>
This corresponds to the following value:

#Blks Avail = OSMemTbl[i].OSMemNFree;

11.06 #Blks Used <INT16U>
This corresponds to the following value:

#Blks Used = OSMemTbl[i].OSMemNBlks - OSMemTbl[i].OSMemNFree;

11.07 #Blks Max <INT16U>
This corresponds to the following value:

#Blks Max = OSMemTbl[i].OSMemNBlks;

11.08 Blk Size <INT16U>
This corresponds to the following value:

#Blk Size = OSMemTbl[i].OSMemBlkSize;

11.09 OS_MEM @ <Hex address>
This corresponds to the following value:

OS_MEM@ = &OSMemTbl[i];

11.10 Starts @ <Hex address>
This corresponds to the following value:

Starts @ = OSMemTbl[i].OSMemAddr;

