
Freescale Semiconductor
Application Note

Document Number: AN3519
Rev. 0, 9/2007

Contents

Introduction . 1
Hardware Optimizations . 2

2.1 Branch Target Buffer . 2
2.2 Flash Bus Interface Unit Settings 3
2.3 Frequency Modulated Phase Locked Loop. 5
2.4 Crossbar Switch . 6
2.5 Cache and MMU . 8
Application Software . 9

3.1 Compiler Optimizations . 9
3.2 Signal Processing Extension. 10
3.3 Hardware Single Precision Floating Point 11
3.4 Variable Length Encoding 11
Peripherals and General Application Guidelines 12
Performance Optimization Checklist 12
References . 13

Optimizing Performance for the
MPC5500 Family
by: Alistair Robertson

Powertrain Systems EKB
1 Introduction
The MPC5500 family of highly integrated
microcontrollers boasts a host of new features, including
a crossbar switch (XBAR), an enhanced Direct Memory
Access (eDMA), and a Memory Management Unit
(MMU).

These features are initialized upon negation of reset by a
software program called the Boot Assist Module (BAM).
This main purpose of the BAM is to initialize the device
to an acceptable level, then locate and execute the user’s
application code.

Although the BAM performs basic initialization, it does
not necessarily provide the optimum settings for any
given application.

This application note provides guidance for users to fully
optimize their application to achieve the highest possible
performance from the MPC5500 family. It provides a
description of the areas that should be focused on when
optimizing an application, and provides benchmark data

1
2

3

4
5
6

© Freescale Semiconductor, Inc., 2007. All rights reserved.

Hardware Optimizations
to indicate the potential benefits. It focuses on hardware configurations and certain aspects of the
application software, such as compiler settings and optimizations.

This paper does not provide software examples and it is intended to supplement application note AN2789,
“MPC5500 Configuration and Initialization”.

This information in this document applies to the following devices.
MPC5553, MPC5554, MPC5533, MPC5544, MPC5561, MPC5565, MPC5566 and MPC5567.

2 Hardware Optimizations

2.1 Branch Target Buffer
To resolve branch instructions and improve the accuracy of branch predictions, the e200z6 and e200z3 Zen
cores implement a dynamic branch prediction mechanism using a branch target buffer (BTB), a fully
associative address cache of branch target addresses. Its purpose is to accelerate the execution of software
loops with some potential change of flow within the loop body.

By default, this feature is disabled following negation of reset and execution of the BAM. It is controlled
by the Branch Unit Control and Status Register (BUCSR). The BTB’s contents should be flushed and
invalidated by writing BUSCR[BBFI]=1, and it may be enabled by writing BUSCR[BPEN]=1.

Generally, the BTB has a bigger impact on cacheless devices, due to the increased average cycle count for
accessing the Flash memory.

Figure 1 details the potential performance gains achievable by enabling the BTB.
Optimizing Performance for the MPC5500 Family, Rev. 0

Freescale Semiconductor2

Hardware Optimizations

Figure 1. Performance impact of Branch Target Buffer

NOTE
Data for Figure 1 collected running Dhrystone version 2.1, compiled with
Greenhills Multi Version 5.0 (Beta), with no optimizations running on
MPC5534 Rev. A.

The Hardware Implementation Dependent Register 0 (HID0) register is a core implementation dependent
register that is used for various configuration and control functions. Additional control of the BTB is
available by using the HID0[BPRED] field. This controls whether forward or backward branches (or both)
are candidates for entry into the BTB, and thus for branch prediction. The default setting is BPRED = 0b00,
which enables forward and backward branch prediction, but the optimum setting should be assessed. It is
recommended to not disable branch prediction.

2.2 Flash Bus Interface Unit Settings
The Flash Bus Interface Unit (FBIU) interfaces the system bus to the Flash memory array controller. The
Flash BIU contains prefetch buffers and a prefetch controller which, if enabled, prefetches sequential lines
of data from the Flash array into the buffer. Prefetch buffer hits allow zero-wait state responses.

The Flash Bus Interface Unit Control Register (BIUCR) register controls access to the internal Flash array.
Its settings define the number of cycles required to access the array, access times, and how the prefetch
buffering scheme operates.

BTB Setting vs. Perfomance

0

0.2

0.4

0.6

0.8

1

1.2

25MHz 50MHz 80MHz

N
or

m
al

is
ed

 E
xe

cu
tio

n
Ti

m
e

BTB on
BTB off
Optimizing Performance for the MPC5500 Family, Rev. 0

Freescale Semiconductor 3

Hardware Optimizations
Following negation of reset and execution of the BAM, the instruction and data prefetching is disabled,
and the number of cycles required to access the internal Flash array is set to its maximum value of seven
additional wait states.

As the operating frequency of the device is set by configuring the FMPLL (see Section 2.3, “Frequency
Modulated Phase Locked Loop”), the number of cycles required to access the internal array should be
configured accordingly. Note that the Flash BIUCR cannot be altered by code executing from the Flash
array. Code for configuring the Flash should be copied to and executed from system RAM.

The reference manual for each MPC5500 device contains tables dictating the required Flash BIUCR
settings for a given operating frequency. The reference manuals also provide recommendations for the
prefetch buffer settings. Note that the BIUCR settings vary across the MPC5500 family and may vary
between revisions of a particular device.

Table 1 shows the recommended setting for the Flash BIUCR register for specific frequency ranges for the
MPC5534. For other devices, refer to the Flash chapter of the device reference manual for specific settings.

The MPC5534/3 has another Flash bus interface control register, BIUCR2. This register is not
implemented on the other MPC5500 devices described in this application note. This register contains a
Line Buffer Configuration field, BIUCR2[LBCFG]. This may be used to determine how many of the
prefetch buffers are allocated to instruction fetches, and how many are allocated to data accesses. The
default value is copied from a location in the shadow row of the Flash array following reset. This optimum
setting for this register is application dependent, but in most cases the value of 0b00 (which allocates all
buffers to any Flash access) will provide the best performance.

The data in Figure 2 illustrates the impact of BIUCR settings.

Table 1. BIUCR settings for MPC5534 Rev A

Frequency MnPFE APC WWSC RWSC DPFEN IPFEN PFLIM BFEN

Up to 25 MHz1

1 Requires that Pipelined Reads be disabled in the Flash Module Configuration register (Flash_MCR[PRD]=0b1).

0xF 0x0 0x1 0x0 0b1 0b1 0x6 0b1

Up to 50 MHz 0xF 0x1 0x1 0x1 0b1 0b1 0x6 0b1

Up to 75 MHz 0xF 0x2 0x1 0x2 0b1 0b1 0x6 0b1

Up to 82 MHz 0xF 0x3 0x1 0x3 0b1 0b1 0x6 0b1

MnPFE: Master Prefetch Enable DPFEN: Data prefetch Enable

APC: Address Pipelining Control IPFEN: Instruction Prefetch Enable

RWSC: Read Wait State Control PFLIM: Prefetch Limit

WWSC: Write Wait State Control BFEN: FBIU line read buffers Enable
Optimizing Performance for the MPC5500 Family, Rev. 0

Freescale Semiconductor4

Hardware Optimizations
Figure 2. Performance Impact of Flash BIU Settings

NOTE
Data for Figure 2 collected running Dhrystone version 2.1, compiled with
Greenhills Multi Version 5.0 (Beta), with no compiler optimizations
running on an MPC5534 Rev A.

2.3 Frequency Modulated Phase Locked Loop

The default operating frequency of the MPC55xx device is 1.5 times the crystal reference frequency.
Typically, the system frequency is increased shortly after reset negates, to provide acceptable performance.
Take care to ensure that the correct internal and/or external Flash configuration is chosen for the selected
system frequency (refer to Section 2.2, “Flash Bus Interface Unit Settings”). Application Note AN2789,
section 4.2.4 “Initialize the PLL”, provides details on how the frequency modulated phase locked loop
(FMPLL) should be initialized in an application.

Flash BIU Setting vs. Execution Time

0

0.2

0.4

0.6

0.8

1

1.2

25 MHz 50 MHz 80 MHz

N
or

m
al

is
ed

 E
xe

cu
tio

n
Ti

m
e

Default Settings

Wait States

Wait States &
Prefetch
Optimizing Performance for the MPC5500 Family, Rev. 0

Freescale Semiconductor 5

Hardware Optimizations
Figure 3. System Performance Versus Operating Frequency

NOTE
Data for Figure 3 collected running Dhrystone version 2.1, compiled with
Greenhills Multi Version 5.0 (Beta), with no optimizations running on an
MPC5534 Rev A.

System performance cannot be linearly extrapolated with system frequency, as is often the expectation. It
is due to the insertion of additional Flash wait states as system frequency increases that system
performance does not scale linearly, as shown in Figure 3. For example, an MPC5534 operating at 50 MHz
provides greater performance with lower power consumption than when operating at 56 MHz.

2.4 Crossbar Switch
This multi-port crossbar switch (XBAR) supports simultaneous connections between master ports and
slave ports. The XBAR allows for concurrent transactions to occur from any master port to any slave port.
If a slave port is simultaneously requested by more than one master port, arbitration logic selects the higher
priority master and grants it ownership of the slave port. All other masters requesting that slave port are
stalled until the higher priority master completes its transactions. By default, requesting masters are
granted access based on a fixed priority. A round-robin priority mode also is available.

The e200z6 based MPC555x and MPC556x devices have Von Neumann architectures: they have a single
unified bus for instruction fetches and data accesses. The default XBAR configuration sets the CPU bus
as the highest priority master on the XBAR switch with all slaves parked on this master. This default
configuration for the MPC555x/6x crossbar is typically the optimum configuration.

Perfomance & Wait States vs. Frequency

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60 70 80

System Frequency (MHz)

N
o.

 W
ai

t S
ta

te
s

0

0.2

0.4

0.6

0.8

1

1.2

No
rm

al
is

ed
 P

er
fo

m
an

ce

Wait States

Performance
Optimizing Performance for the MPC5500 Family, Rev. 0

Freescale Semiconductor6

Hardware Optimizations
The e200z3 based MPC5534/3 has a Harvard architecture: it has independent buses for instruction fetches
and data accesses. However, by default, the BAM applies the same configuration to the XBAR registers
as for the unified bus of the MPC5554. This default setting provides less than optimum performance.

Optimal XBAR settings are application dependent, but in e200z3 based devices assigning the CPU data
bus to have highest priority and parking the slave port associated with system RAM on this master
generally provides the best overall performance.

Figure 4 shows the performance improvement possible on the MPC5534 by reconfiguring the XBAR
settings.

Figure 4. Improving MPC5534 performance by reconfiguring the XBAR

NOTE
Data for Figure 4 collected running Dhrystone version 2.1, compiled with
Greenhills Multi Version 5.0 (Beta), with no optimizations running on an
MPC5534 Rev A.

To reconfigure the XBAR on the MPC5534, write the following resisters:
1. XBAR_SGPCR3 = 0x0000_0004. This parks the slave 3 (internal SRAM) on master port 4 (CPU

data bus)
2. Write XBAR_MPR0 = 0x0000_0321. This sets slave port 0 (Flash) to give the master port 4 (CPU

data bus) highest priority.

XBAR Settings vs. Execution Time

0

0.2

0.4

0.6

0.8

1

1.2

25MHz 50MHz 80MHz

N
or

m
ai

ls
ed

 E
xe

cu
tio

n
Ti

m
e

Default
Settings
Optimised
Settings
Optimizing Performance for the MPC5500 Family, Rev. 0

Freescale Semiconductor 7

Hardware Optimizations
2.5 Cache and MMU
The MPC5554 provides an 32-kilobyte, 8-way set-associative, unified (instruction and data) cache with a
32-byte line size. The MPC5553 provides an 8-Kbyte, 2-way set associative unified cache with a 32-byte
line size. The MPC5534/3 has no cache. In all cases the Cache is disabled by default.

The cache improves system performance by providing low-latency instructions and data to the e200z6
instruction and data pipelines, which decouples processor performance from system memory performance.
There are several stages to enabling the cache. Not only does the cache itself have to be invalidated then
enabled, but memory regions upon which it can operate must be configured in the MMU to permit cache
access.

General rules for using cache to improve performance:
• Enable cache for all memories being executed from.
• Enable cache for data memories that do not change.
• Reserve part of cache for stack usage.
• Copyback mode in the cache generally uses fewer system resources.
• Avoid using cache copyback mode where another master (for example, eDMA) can access the

same memory as the core.
• Consider locking critical performance routines in cache.

Application note AN2789 provides software examples for enabling the cache and locking the stack.
Figure 5 shows an example of the performance benefits on using the cache in an MPC5554 and MPC5553
system.

Figure 5. Performance Enhancements for MPC555x and MPC556x Caches

NOTE
Cache performance figures generated with Architectural Modeling
Environment simulator, running Powertrain benchmark.

Relative Performance

0

20

40

60

80

100

120

32 16 8 1 0

Cache Size (kB)

Re
la

tiv
e

P
er

fo
rm

an
ce

 (%
)

Optimizing Performance for the MPC5500 Family, Rev. 0

Freescale Semiconductor8

Application Software
Note that the default configuration after the BAM has executed is for the entire system RAM to remain
cache inhibited.

3 Application Software

3.1 Compiler Optimizations
The most significant opportunity for influencing the performance of a given application is by compiler and
linker optimizations. Optimizing is a trade off between code size and performance. The higher the
performance of the application, the greater the size of the code generated. Compilers use a host of features,
such as loop unrolling, function inlining and application profile feedback to make the desired trade-offs
between enhanced performance and minimized code size.

The data in Figure 6 shows the effects of compiler optimization on a simple application. In this case, the
Dhrystone benchmark was run under three conditions:

• Optimized for small code size
• Optimized for high performance
• No optimizations (a trade-off between code size and performance.)

Although this is an extreme example, it highlights how significant the role of the compiler and linker is in
determining the overall performance of an application.

Figure 6. Influence of Compiler Settings on Application Performance and Code Size

NOTE
Dhrystone version 2.1 run on MPC5534 Rev A. Compiled using Greenhills
Multi version 5.0 (Beta). Speed optimizations were –OL, -OI and -OB.
Code Size optimizations were –OS.

Performance vs. Code Size

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2
Normalised Code Size

N
or

m
al

is
ed

 E
xe

cu
tio

n
Ti

m
e

Size Optimized

No Optimizations

Speed Optimized
Optimizing Performance for the MPC5500 Family, Rev. 0

Freescale Semiconductor 9

Application Software
The compiler optimizations do not necessarily have to be applied to the entire application. Analysis of an
application can identify time critical functions that may subsequently be targeted for performance
optimization, without incurring the impact of optimizing the entire application.

There are several other aspects of the compiler and linker that should be considered. In particular, the use
of Small Data Areas (SDAs, sometimes referred to as Special Data Areas) can make a significant
performance improvement. Generally, most compilers, by default, do not use these.

SDAs provide a means to address data quickly. A core general purpose register can act as an address
anchor. Data can be accessed quickly by executing load/store instructions to memory addressed at an offset
from the anchor. The range of memory that is addressable by this offset is referred to as the Small Data
Area. The Power Architecture Embedded Application Binary Interface (EABI) specifies up to three SDAs
as standard, although some compilers allow the user to add additional SDAs as required.

3.2 Signal Processing Extension
To further optimize time critical functions, the Signal Processing Extension Auxiliary Processing Unit
(SPE-APU) may be used. The SPE-APU provides a set of Single Instruction Multiple Data (SIMD)
instructions. These SIMD instructions typically involve performing the same operation on multiple data
elements stored within a single 64-bit register. Through the implementation of SIMD instructions,
including vector multiply and accumulate (MAC) instructions, the SPE APU provides Digital Signal
Processing (DSP) functionality. This can be used to accelerate signal processing routines, such as Finite
Impulse Response (FIR), Infinite Impulse Response (IIR) and Discrete Fourier Transforms (DFT).

The data in Table 2 provide an example of the performance improvements that can be made for typically
DSP functions. For a full set of performance figures refer to the “MPC5500 DSP Function Library” and
the “MPC5500 DSP Function Library 2” user manuals.

NOTE
The “Improvement to C function“ column in Table 2 shows performance
increase comparing the assembly code to a respective C function. The value
is calculated as the ratio of the number_of_clock_cycles_of_C_function to
the number_of_clock_cycles_of_optimized_library_function.

Table 2. Example Performance Improvements Achieved Using SPE-Assembly Versus C-Code

Function Description Configuration
Cycle
Count

Improvement to
C-Function

FIR Real 32TAP FIR filter with
symmetrical impulse response

256 entry output vector 9447 18.5

IIR Direct form 2nd order IIR filter 256 entry output vector 2371 3.7

FFT 256-point complex FFT, single
precision floating point

Vector of twiddle factors of
length 256 in internal Flash

12465 5.2
Optimizing Performance for the MPC5500 Family, Rev. 0

Freescale Semiconductor10

Application Software
3.3 Hardware Single Precision Floating Point
The SPE-APU also supports 32-bit IEEE®-754 single-precision floating-point formats, and supports
vector and scalar single-precision floating-point operations. Most compiler vendors include libraries that
can emulate floating point functionality. However, by specifying the correct compiler options, the single
precision floating point instructions may be used.

Experiments on small sections of floating point C-code have demonstrated performance increase in excess
of an order of magnitude, when enabling hardware floating point over software floating point emulation.

3.4 Variable Length Encoding
In addition to the base Power Architecture Book E instruction set support, the Zen cores also implement
the VLE (variable-length encoding) APU, providing improved code density. The VLE-APU can be viewed
as a supplement to the existing Power Architecture instruction set that can be conditionally applied to a
portion of, or an entire application for which improved code density is desired.

Using it is straightforward:
1. Select the appropriate compiler target and option to generate VLE code.
2. Configure the Memory Management Unit (MMU) to specify VLE attributes for the relevant MMU

pages.

VLE-enabled cores run both Book E and VLE instruction encodings on a page by page basis, with pages
defined by the MMU. The performance impact of implementing VLE is small. Generally, there is less than
3% performance impact, and, more typically for Powertrain code, this is closer to 1%.

Table 3 provides benchmark examples of the code size improvement that may be achieved with VLE for
a range of applications.

Table 3. VLE Code Size Reductions

Benchmark Code Size Reduction (%)

Freescale General Purpose Code 30.4

EEMBC 32.2

SpecINT95 29.2

Freescale Powertrain Code 29.4

X Powertrain Code 28.6

Y Powertrain code 25.6-28.9

Z Powertrain Code 30.5

Notes:
1. Data collected using VLE with Green Hills Compiler (MULTI v4.0.7

compared to MULTI v4.0.4 non-VLE)
2. The VLE APU is further documented in “PowerPC VLE APU Definition,

Version 1.00", a separate document.

3. The MPC5554 and MPC5553 do not support VLE.
Optimizing Performance for the MPC5500 Family, Rev. 0

Freescale Semiconductor 11

Peripherals and General Application Guidelines
4 Peripherals and General Application Guidelines
Optimizing the device configuration and compiler setup is only one part of optimizing an entire
application. Correct use of the peripherals can also dramatically improve overall system performance. In
particular, use of the interrupt controller, the enhanced Direct Memory Access (eDMA), and intelligent
peripherals such as the Enhanced Timer Processing unit (eTPU), can off-load significant work from the
CPU.

For example, the eDMA may be used to shift data to avoid unnecessary CPU loading. Most peripheral
modules can generate eDMA requests to trigger data transfers. A typical application example would be
using the eDMA to pass conversion commands to the analog to digital converter (ADC) and maintaining
circular buffers of the ADC results in the system RAM, with no core intervention.

The Performance Optimization Checklist in the next section provides several system level examples of
how to optimize an application.

5 Performance Optimization Checklist
1. Hardware Configuration

Description Register(s) Details

Branch Target Buffer Flush with BUSCR[BBFI]
Enable with BUSCR[BPEN]

Flush and enable to improve accuracy of branch
predictions

Branch Prediction HID0[BPRED] Consider fine tuning of BTB operation for specific
applications.

System Frequency FMPLL_SYNCR Select desired frequency taking into account
performance impacts of additional wait states.

Flash Wait States BIUCR[APC, WW, RWSC] Refer to device reference manuals for BIUCR settings for
FMPLL frequency ranges.

Flash Prefetching BIUCR[DPFEN, IPFEN, PFLIM,
BFEN]

Enable prefetching for data and instructions.

Flash Prefetch Algorithm BIUCR2[LBCFG] Allocate buffers to data and/or instructions. Fine tune for
specific applications (MPC5534 and MPC5533 only).

Crossbar Switch Park slave SRAM on master port with
XBAR_SGPCR3.
Set Flash slave port to highest priority
with XBAR_MPR0.

For e200z3 based devices reconfigure to optimize for
Harvard architecture

Cache Invalidate cache with L1CSR0[CINV]
Enable cache with L1CSR0[CE]

Invalidate and the enable the cache for instructions.
Assess in application best configuration for using cache
with data.
Make application dependent decision on copyback
operation and store/push buffer configuration.

Memory Management Unit TLB_MAS2[VLE, I] Configure relevant pages for cache and VLE by setting
MMU TLB attributes.
Optimizing Performance for the MPC5500 Family, Rev. 0

Freescale Semiconductor12

References
6 References
1. AN2789 Version 1.1, 10/2004.
2. MPC5534 Reference Manual Addendum Version 1, 6/2006
3. MPC5554/3 Reference manual version 3.1, 11/2005
4. MPC5500 DSP Function Library users manual.
5. MPC5500 DSP Function Library 2 users manuals.

2. Software Configuration

Description Registers Details

Compiler optimization N/A Use the features of the compiler to select the optimum
trade off between code size and performance
improvements. Enable usage of small data areas.

Hardware floating point Enable with MSR[SPE] Set compiler switches to specify using hardware single
precision floating point as opposed to software
emulation.

Signal processing extensions Enable with MSR[SPE] Take advantage of the SPE-APU to encode time critical
functions in SPE assembly code.

Variable Length Encoding Enabled with TLB_MAS2[VLE] Set compiler switches and configure the MMU to take
advantage of the VLE-APU.

3. Peripherals and General Application Guidelines

• Use the eDMA rather than the core to move data where possible. Most peripherals can generate eDMA requests to
shift data.

— Use the eDMA to control movement of commands and results from ADC and to maintain circular buffers in system
memory.

— Create circular buffers of ADC results can exist in RAM with zero core overhead.

• Shift loading from the CPU to the eTPU whenever possible.

— Each eTPU provides ~1MIPs performance.

— eTPU can trigger ADC directly – no need for CPU interruption.

• Avoid software polling and allow peripherals to request interrupts or eDMA servicing.

— Use hardware instead of software vectored interrupts to reduce latency.
— Trigger eDMA requests rather than interrupting the CPU to move data/results.

• Avoid external memories unless absolutely necessary.
— Place time critical functions in internal memory.

— Enable bursting on the external bus.

— Reduce external bus wait states from default maximum settings
Optimizing Performance for the MPC5500 Family, Rev. 0

Freescale Semiconductor 13

Document Number: AN3519
Rev. 0
9/2007

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
The Power Architecture and Power.org word marks and the Power and Power.org logos
and related marks are trademarks and service marks licensed by Power.org

© Freescale Semiconductor, Inc. 2007. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 Hardware Optimizations
	2.1 Branch Target Buffer
	2.2 Flash Bus Interface Unit Settings
	2.3 Frequency Modulated Phase Locked Loop
	2.4 Crossbar Switch
	2.5 Cache and MMU

	3 Application Software
	3.1 Compiler Optimizations
	3.2 Signal Processing Extension
	3.3 Hardware Single Precision Floating Point
	3.4 Variable Length Encoding

	4 Peripherals and General Application Guidelines
	5 Performance Optimization Checklist
	6 References

