
Freescale Semiconductor
Application Note

AN2898
Rev. 0.0, 06/2005
Configuring and Using the
MAC7100 eDMA Controller

DMA
by: Eric Ocasio and David McMenamin

Applications Engineering
Freescale 32-bit Embedded Controller Division
Table of Contents
1 Introduction..1
1.1 DMA controller Overview...................................1
1.2 MAC7100 eDMA Controller Features2
1.3 eDMA Architectural Integration..........................2

2 Activating eDMA Transfers3
2.1 Activation Sources...3
2.2 DMA Multiplexer ..4
2.3 Activation Options..5
2.4 Handling Multiple Transfer Requests6

3 Transfer Process..6
3.1 Major and Minor Transfer Loops7
3.2 Completing a Minor Transfer Loop.....................7
3.3 Completing a Major Transfer Loop.....................8

4 Configuring the eDMA...8
4.1 Configuration Steps ...8
4.2 Transfer Control Descriptors9

5 Example eDMA Configurations12
5.1 Example 1: A Basic Transfer............................12
5.2 Example 2: PIT-Gated DMA Requests13
5.3 Example 3: Circular Buffers16

6 Conclusion...18
The MAC7100 family of Microcontrollers feature
Freescale’s enhanced Direct Memory Access (eDMA)
controller.

1 Introduction
This application note will provide the reader with a
working knowledge of the MAC7100 enhanced DMA
controller. Topics covered include: introduction and
overview of DMA controllers, features of the MAC7100
eDMA module, interaction between the eDMA and
DMA multiplexer and configuration advice for your
application. Examples are used throughout this
document to demonstrate increasingly complex
configurations.

A ZIP file (AN2898SW.zip) containing all of the
examples used within this document is available for
download from www.freescale.com/mac7100.

1.1 DMA controller Overview
A DMA controller provides the ability to move data from
one memory mapped location to another. Once
© Freescale Semiconductor, Inc., 2005. All rights reserved.

• Preliminary

This document contains information on a new product. Specifications and information herein
are subject to change without notice.

http://www.freescale.com/mac7100

Introduction
configured and initiated, the DMA controller operates in parallel to the central processing unit (CPU),
performing data transfers that would otherwise have been handled by the CPU. This results in reduced
CPU loading and a corresponding increase in system performance. Figure 1 illustrates the functionality
provided by a DMA controller.

Figure 1. DMA Operational Overview

1.2 MAC7100 eDMA Controller Features
All MAC7100 devices feature a 16-channel eDMA controller. Each channel can be independently
configured with the details of the transfer sequence that is to be executed. These details are specified in the
channel transfer control descriptor (TCD) memory array.

eDMA transfers can be activated in three ways:
1. Events occurring in peripheral modules and off chip can assert a DMA transfer request.
2. Software activation.
3. Channel to channel linking, where completion of a transfer on one channel activates another.

Each channel can generate an interrupt to indicate that it has partially completed or fully completed a
transfer. Interrupts can also be generated to indicate that a transfer error has occurred.

Scatter/gather processing is supported by each of the 16 channels. This feature allows a channel to
automatically load a new TCD into its registers. Multiple TCD descriptors can therefore be used with a
single channel without extra loading being put on the core.

1.3 eDMA Architectural Integration
To allow the eDMA and CPU to operate simultaneously a multi-master bus architecture is implemented.
The MAC7100 multi-master bus has two master and three slave nodes.

The cross-bar switch forms the heart of this multi-master architecture. It links each master to the required
slave device. If both masters attempt joint access to the same slave, an arbitration scheme commences,
eliminating bus contention. Both fixed priority and round robin arbitration schemes are available.

0x11112222

0x33334444

0x55556666

0x77778888

0x9999AAAA

0xBBBBCCCC

0xDDDDEEEE

0x9999AAAA

DMA
Reads
Source

0x9999AAAA

Source
e.g. RAM

DMA

DMA
Transfer Request

Data

DMA
Writes
Source
Data
to the

Destination

Destination
e.g. SPI TX

Register
Configuring and Using the MAC7100 eDMA Controller, Rev. 0.0

Preliminary Freescale Semiconductor2

Activating eDMA Transfers
Arbitration settings for the cross-bar can be configured in the cross-bar switch module registers. Please
refer to the MAC7100 Microcontroller Family Reference Manual for more details.

The cross-bar switch and interaction between bus masters and slave devices is illustrated in Figure 2. In
this example, the eDMA Controller is accessing one of the peripherals on the intelligent peripheral bus
while the ARM7TDMI-S™ core is concurrently accessing the SRAM memory. The cross-bar switch has
linked the appropriate buses for this situation.

Figure 2. MAC7100 Multi-Master Bus Architecture

2 Activating eDMA Transfers

2.1 Activation Sources
Up to 42 events occurring within other peripheral modules can activate an eDMA transfer. In many
modules, event flags can be asserted as either eDMA or Interrupt requests. Table 1 details the eDMA
transfer request sources.

Table 1. eDMA Transfer Request Sources

Source Requests Comments

eSCI A, eSCI B,
eSCI C, eSCI D

8 Each eSCI can generate two requests: one for transmission complete and one for
data received.

DSPI A, DSPI B 4 Each DSPI can generate two requests: one for transmission complete and one for
data received.

I2C 2 Two Requests: one for transmission complete and one for data received.

ATD A, ATD B 4 Two requests for each ATD: one for command and one for result available.

eMIOS 16 Comparator match occurred flag for each channel can assert a request.

PIT 8 Any other request can be “gated” along with a PIT request. PIT requests can also
be used in standalone to provide periodic data transfers.

eDMA
Controller

ARM7TDMI-S
Core

Cross-Bar
Switch

Peripheral
Bus Bridge

External
Bus Interface

Random Access
Memory Controller
Configuring and Using the MAC7100 eDMA Controller, Rev. 0.0

PreliminaryFreescale Semiconductor 3

Activating eDMA Transfers
NOTE
Table 1 shows all the request sources; on some derivatives, the request will
not be present if the peripheral module is not implemented on the device.

Channels can also be activated by software and by channel linking. Each channel TCD provides a START
bit, which activates the channel when asserted. This makes it possible to activate each channel in software.
The START bit also provides a useful tool for test and debug, making it possible to assess if the channel
operates as expected each time it is activated.

Channel linking provides the means for one channel to assert the START bit of another channel. The linked
channel can be activated at stages of the transfer or on completion of the transfer.

2.2 DMA Multiplexer
As there are 42 peripheral request sources and 16 channels, a multiplexer is required to route the required
request signal to the appropriate channel. The DMA Multiplexer (DMAMux) performs this task. It also
provides the ability to gate a transfer request with the Periodic Interrupt Controller (PIT) on channels 0–7;
this is discussed further in Section 2.3. The logical structure of the DMAMux is illustrated in Figure 3.

Figure 3. DMAMux Block Diagram

eDMA Channel 0

eDMA Channel 1

eDMA Channel 2

eDMA Channel 3

eDMA Channel 4

eDMA Channel 5

eDMA Channel 6

eDMA Channel 7

eDMA Channel 8

eDMA Channel 9

eDMA Channel 10

eDMA Channel 11

eDMA Channel 12

eDMA Channel 13

eDMA Channel 14

eDMA Channel 15

C
ha

nn
el

 R
ou

te
r

P
IT

 T
im

er
 1

P
IT

 T
im

er
 2

P
IT

 T
im

er
 3

P
IT

 T
im

er
 4

P
IT

 T
im

er
 5

P
IT

 T
im

er
 6

P
IT

 T
im

er
 7

P
IT

 T
im

er
 8

Peripheral Sources 1 to 42
Configuring and Using the MAC7100 eDMA Controller, Rev. 0.0

Preliminary Freescale Semiconductor4

Activating eDMA Transfers
2.3 Activation Options
The DMAMux supports three different options for asserting transfer requests to the DMA.

1. Disabled Mode: No request signal is routed to the eDMA channel and the channel is disabled. This
is the reset state of a channel in the DMAMux. Disabled mode can also be used to suspend an
eDMA channel while it is reconfigured or not required.

2. Normal Mode: A DMA request (for example, eSCI A transmission complete) is routed directly to
the specified eDMA channel.

3. Periodic Trigger Mode: A PIT is used in conjunction with the DMA request source. For the
request to be routed to the channel, both the DMA request source and the period interrupt must be
active. This provides a means to “gate” or “throttle” transfer requests using the PIT. Figure 4
shows the relationship between the periodic interrupt, transfer request and the transfer activation.

Figure 4. PIT Gated Transfer Activation

The hardware provides a number of “always enabled” request sources that can be used in periodic trigger
mode. These permit transfers to be initiated based only on the PIT. This is shown in Figure 5. See Table 2
for a full listing of request sources and their encodings.

Figure 5. PIT Only Transfer Activation

Peripheral Request

PIT Trigger

Channel Activated

Peripheral Request

PIT Trigger

Channel Activated

(always enabled)
Configuring and Using the MAC7100 eDMA Controller, Rev. 0.0

PreliminaryFreescale Semiconductor 5

Transfer Process
2.4 Handling Multiple Transfer Requests
Only one channel can actively perform a transfer. Therefore, to handle multiple pending transfer requests
the eDMA controller offers channel prioritisation. Fixed priority or round robin prioritisation can be
selected.

In the fixed priority scheme each channel is assigned a priority level. When multiple requests are pending
the channel with the highest priority level performs its transfer first. By default, fixed priority arbitration
is implemented, with each channel being assigned a priority level equal to its channel number. Other
priority levels can be assigned if required. Higher priority channels can preempt lower priority channels.
Preemption occurs when a channel is performing a transfer while a transfer request is asserted to a channel
of a higher priority. The lower priority channel will halt its transfer on completion of the current read/write
operation and allow the channel of higher priority to carry out its transfer. The lower priority channel will
resume its transfer once the higher priority channel has completed its transfer. One level of preemption is
supported. Preemption is an option and must be enabled on a per channel basis if required.

In round robin mode, the eDMA cycles through the channels, from the highest to the lowest, checking for
a pending request. When a channel with a pending request is reached, it is allowed to perform its transfer.
Once the transfer has been completed, the eDMA continues to cycle through the channels looking for the
next pending request.

3 Transfer Process
Prior to configuring the eDMA it is useful to understand how the eDMA performs a transfer.

Table 2. Transfer Request Sources and CHCONFIGn Encodings

SOURCE[5:0] Request Source SOURCE[5:0] Request Source SOURCE[5:0] Request Source

0x00 Unassigned (disabled) 0x0F eMIOS Channel 0 0x1E eMIOS Channel 15

0x01 I2C Transmit 0x10 eMIOS Channel 1 0x1F ATD_A Result

0x02 I2C Receive 0x11 eMIOS Channel 2 0x20 ATD_A Command

0x03 DSPI_A Transmit 0x12 eMIOS Channel 3 0x21 ATD_B Result

0x04 DSPI_A Receive 0x13 eMIOS Channel 4 0x22 ATD_B Command

0x05 DSPI_B Transmit 0x14 eMIOS Channel 5 0x23 Always Enabled 0

0x06 DSPI_B Receive 0x15 eMIOS Channel 6 0x24 Always Enabled 1

0x07 eSCI_A Transmit 0x16 eMIOS Channel 7 0x25 Always Enabled 2

0x08 eSCI_A Receive 0x17 eMIOS Channel 8 0x26 Always Enabled 3

0x09 eSCI_B Transmit 0x18 eMIOS Channel 9 0x27 Always Enabled 4

0x0A eSCI_B Receive 0x19 eMIOS Channel 10 0x28 Always Enabled 5

0x0B eSCI_C Transmit 0x1A eMIOS Channel 11 0x29 Always Enabled 6

0x0C eSCI_C Receive 0x1B eMIOS Channel 12 0x2A Always Enabled 7

0x0D eSCI_D Transmit 0x1C eMIOS Channel 13

0x0E eSCI_D Receive 0x1D eMIOS Channel 14
Configuring and Using the MAC7100 eDMA Controller, Rev. 0.0

Preliminary Freescale Semiconductor6

Transfer Process
3.1 Major and Minor Transfer Loops
Each time a channel is activated and executes, “n” bytes are transferred from the source to the destination.
This is referred to as a minor transfer loop. A major transfer loop consists of a number of minor transfer
loops; this number is specified within the TCD. As iterations of the minor loop are completed, the current
iteration (CITER) TCD field is decremented. When the current iteration field has been exhausted, the
channel has completed a major transfer loop.

Figure 6 shows the relationship between major and minor loops. In this example a channel is configured
so that a major loop consists of three iterations of a minor loop. The minor loop is configured to be a
transfer of 4 bytes.

Figure 6. Major and Minor Transfer Loops

The channel performs a selection of tasks upon completion of each minor and major transfer loop, as
defined below.

3.2 Completing a Minor Transfer Loop
On completion of the minor loop, excluding the final minor loop, the eDMA carries out these tasks:

• Decrements the current iteration counter
• Updates the source address by adding the current source address to the signed source offset.

SADDR = SADDR + SOFF. The source address is updated automatically as transfers are
performed. On completion of the minor loop the source address will contain the source address
for the last piece of data that was read in the minor loop. The offset is added to this value.

• Updates the destination address by adding the current destination address to the signed destination
offset. DADDR = DADDR + DOFF.

• Updates the channel status bits.

1

Source Data
Transferred

2

3
4

1

2
3

4

1
2

3

4

CITER
3

CITER
2

CITER
1

Major Loop

Minor Loop(bytes – n = 4)DMA Request

DMA Request

DMA Request

Time

(channel activated)
Configuring and Using the MAC7100 eDMA Controller, Rev. 0.0

PreliminaryFreescale Semiconductor 7

Configuring the eDMA
• If channel linking is enabled upon completion of the minor loop, the start bit of the linked channel
is asserted.

• If the major loop is half complete and the major loop half complete interrupt is enabled, an
interrupt request is asserted.

3.3 Completing a Major Transfer Loop
On completion of the major / final minor loop, the eDMA performs these tasks:

• Updates the source address by adding the current source address to the last source address
adjustment. The last source address adjustment contains the address offset that should be added to
the present source address in order to calculate the address of the new source data.
SADDR = SADDR + SLAST.

• Updates the destination address by adding the current destination address to the last destination
address adjustment. The last destination address adjustment contains the address offset that
should be added to the present destination address in order to calculate the address of the new
destination data. DADDR = DADDR + DLAST.

• Updates the channel status bits.
• If channel linking is enabled upon completion of the major loop the start bit of the linked channel

is asserted.
• If the major loop complete interrupt is enabled, assert an interrupt request.
• The current iteration (CITER) field is reloaded from the beginning iteration count (BITER) field.

4 Configuring the eDMA
This section covers some of the important configuration steps and register fields. For full details of all the
register fields please consult the MAC7100 Microcontroller Family Reference Manual (MAC7100RM).

4.1 Configuration Steps
To configure the eDMA the following initialisation steps should be followed:

1. Write the eDMA control register (only necessary if configuration other than default is required),
2. Configure channel priority registers in DCHPRIx (only necessary if configuration other than

default is required),
3. Enable error Interrupts using either the DMAEEI or DMASEEI register (only necessary if

configuration other than default is required),
4. Write the transfer control descriptors for channels that will be utilised, and
5. Configure the appropriate peripheral module and configure the eDMA to route the activation

signal to the appropriate channel.
Configuring and Using the MAC7100 eDMA Controller, Rev. 0.0

Preliminary Freescale Semiconductor8

Configuring the eDMA
4.2 Transfer Control Descriptors
All transfer attributes for a channel are defined in the unique TCD for the channel. Each TCD is stored in the
eDMA controller module SRAM. Only the DONE, ACTIVE and STATUS fields are initialised at reset. All
other TCD fields are undefined at reset and must be written by software before the channel is activated. Failure
to do this will result in unpredictable behaviour of the channel. Figure 7 shows the TCD memory map.

Bit
Offset

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 SADDR

32 SMOD SSIZE DMOD DSIZE SOFF

64 NBYTES

96 SLAST

128 DADDR

160

C
IT

E
R

_E
_

LI
N

K CITER[14:9] or
CITER_LINKCH

CITER[8:0] DOFF

192 DLAST_SGA

224

B
IT

E
R

_E
_

LI
N

K BITER[14:9] or
BITER_LINKCH

BITER[8:0] BWC MAJOR_LINKCH

D
O

N
E

A
C

T
IV

E

M
A

JO
R

_E
_L

IN
K

E
_S

G

D
_R

E
Q

IN
T

_H
A

LF

IN
T

_M
A

J

S
TA

R
T

Figure 7. TCD Memory Map

Table 4-3. Transfer Control Descriptor Field Descriptions

Bits Name Description

0–31 SADDR[31:0] Source address. Memory address of the transfer source data. This 32-bit field allows any area of
the MAC7100 memory map to be selected. As the eDMA performs transfers this field is
automatically updated for the next transfer.

32–36 SMOD[4:0] Source address modulo. Provides a simple implementation of a circular data queue.
00000 Source address modulo feature is disabled.
non-0 The number of lower source address bits that are allowed to increment. A circular buffer is created

as the lower address fields wrap to their original value while the upper fields remain fixed.

37–39 SSIZE[2:0] Source data transfer size. This field defines the read data size for the eDMA engine. It does not
define the amount of data transferred per channel activation.
000 8-bit. 100 16-byte burst.
001 16-bit. 101 Reserved.
010 32-bit. 110 Reserved.
011 Reserved. 111 Reserved.

For example, for a transfer of 8 bytes per channel activation and SSIZE = 16-bits the eDMA will
perform 4 16-bit reads. If SSIZE was 32-bits the eDMA would perform 2 reads for this transfer.

40–44 DMOD[4:0] Destination address modulo. Can be utilised to implement a circular destination queues. As per
SMOD but for the destination address.
Configuring and Using the MAC7100 eDMA Controller, Rev. 0.0

PreliminaryFreescale Semiconductor 9

Configuring the eDMA
45–47 DSIZE[2:0] Destination data transfer size. Defines the data write size for the eDMA engine. As per SSIZE.

48–63 SOFF[15:0] Source address signed offset. This signed offset is added to the current source address, upon
completion of a minor loop, to calculate the new source address.

64–95 NBYTES[31:0] Minor byte transfer count. Number of bytes to be transferred on each activation of the channel.

96–127 SLAST[31:0] Last source address adjustment. This signed offset is added to the source address on completion of
the major loop, to calculate the new source address value. It can be used to restore the source address
to the original value or to adjust the source address to the next data structure.

128–159 DADDR[31:0] Destination address. Memory address of the transfer destination. This 32-bit field allows any area
of the MAC7100 memory map to be selected. As the eDMA performs transfers this field is
automatically updated for the next transfer.

160 1 CITER_
E_LINK 1

Enable channel linking on minor loop complete. As the channel completes a minor loop it asserts
the START bit of the channel defined in CITER_LINKCH[5:0].
0 Channel-to-channel linking is disabled.
1 Channel-to-channel linking is enabled.

Note: This bit must be equal to the BITER_E_LINK bit, otherwise a configuration error will be
reported.

161–166 1 CITER_
LINKCH[5:0] 1

Minor loop complete link channel. If CITER_E_LINK is set, this 6-bit field specifies the channel that
will be started following completion of the minor loop.
00xxxx Linked channel number xxxx.
01xxxx Reserved.
10xxxx Reserved.
11xxxx Reserved.

161–175 1

or
167–175 1

CITER[14:0] 1

or
CITER[8:0] 1

Current major iteration count. This value represents the current number of minor loops that are to
be executed to complete the major loop. As minor loops are completed, this field is decremented
until it is exhausted. When it is exhausted, a major loop is complete. Upon completion of a major
loop, the field is reloaded with the value contained in the BITER field. When this field is initially
loaded, it must be set to the same value as the BITER field as the eDMA will not copy BITER into
CITER until the first major loop has been completed.

Note: If channel linking is disabled a 15-bit iteration count is used instead of a 6-bit link channel
number and 9-bit iteration count.

176–191 DOFF[15:0] Destination address signed offset. This signed offset is added to the current destination address
upon completion of a minor loop, to calculate the next destination address.

192–223 2 DLAST_SGA
[31:0] 2

Last destination address adjustment or the memory address for the next TCD to be loaded into this
channel. If scatter/gather is disabled (E_SG = 0) then the value contained in this field performs the
same task as the SLAST field for the destination address. When scatter/gather is enabled (E_SG =
1) this field is used as a pointer to a 0-modulo-32 region that contains the next TCD for this channel.

224 3 BITER_
E_LINK 3

Beginning enable channel linking on minor loop complete. When a major loop is completed this
field is used to re-load the CITER_E_LINK field. Hence when writing the BITER_E_LINK and
CITER_E_LINK they must be configured to the same value.

225–230 3 BITER_
LINKCH[5:0] 3

Beginning minor loop complete link channel. 3 When a major loop is completed, this field is used
to re-load the CITER_LINKCH field. Hence when configuring the BITER_LINKCH and
CITER_LINKCH they must be configured to the same value.

225–239 3

or
231–239 3

BITER[14:0] 3

or
BITER[8:0] 3

Beginning major iteration count. 3 When a major loop is completed, this field is used to re-load the
CITER field in preparation for the next channel activation. When configuring the BITER and CITER
fields they should be configured to the same value.

Table 4-3. Transfer Control Descriptor Field Descriptions (continued)

Bits Name Description
Configuring and Using the MAC7100 eDMA Controller, Rev. 0.0

Preliminary Freescale Semiconductor10

Configuring the eDMA
240–241 BWC[1:0] Bandwidth control. This provides a means of controlling the amount of bus bandwidth the eDMA
uses.
00 No eDMA engine stalls (consume 100% bandwidth)
01 Reserved.
10 eDMA engine stalls for 4 cycles after each read/write
11 eDMA engine stalls for 8 cycles after each read/write

242–247 3 MAJOR_
LINKCH[5:0] 3

Major loop complete link channel.
00xxxx Linked channel number.
11xxxx Reserved.

248 DONE Channel done. This bit is set when the channel completes a major loop. It remains set until the
channel is reactivated by a transfer request or it is cleared by software.

249 ACTIVE Channel active. This bit is set if the channel is performing a transfer. It is set when a minor loop
transfer is started and is cleared, by the hardware, when that minor loop is complete.

250 3 MAJOR_
E_LINK 3

Enable channel-to-channel linking on major loop complete. As the channel completes a major loop
it asserts the START bit of the channel defined in MAJOR_LINKCH[5:0].
0 Channel linking on completion of a major loop is disabled.
1 Channel linking on completion of a major loop is enabled.

251 3 E_SG 3 Enable scatter/gather processing. If scatter/gather is enabled the channel loads a new TCD on
completion of the major loop. DLAST_SGA provides the memory pointer to the new TCD structure
that is to be loaded.
0 Scatter/gather processing is disabled.
1 Scatter/gather processing is enabled.

252 D_REQ Disable request. If this bit is set when the channel completes a major loop, the eDMA clears the
corresponding DMAERQ, disabling the transfer request.
0 The channel DMAERQ bit is not affected.
1 The channel DMAERQ bit is cleared when the major loop is complete.

253 INT_HALF Enable an interrupt when major counter is half complete. When CITER = BITER ÷ 2 the eDMA
asserts an interrupt request in the DMAINT register.
0 The major loop half-point interrupt is disabled.
1 The major loop half-point interrupt is enabled.

254 INT_MAJ Enable an interrupt when major iteration count completes. When CITER = 0 the eDMA asserts an
interrupt request in the DMAINT register.
0 The end-of-major-loop interrupt is disabled.
1 The end-of-major-loop interrupt is enabled.

255 START Channel start. Writing this bit as 0b1 explicitly activates the channel and a minor loop transfer is
performed. If a channel TCD is configured with an illegal value or an illegal combination of values,
a channel error will be reported in the DMAERR register.
0 The channel is not explicitly started.
1 The channel is explicitly activated when this bit is written as a one.

NOTES:
1. Mask set L49P devices do not implement channel linking, and CITER_E_LINK must be written as zero. A 15-bit CITER count

is always used.

2. Mask set L49P devices do not implement scatter/gather, thus this field is always used for DLAST.

3. Mask set L49P devices do not implement channel linking or scatter/gather; thus BITER_E_LINK, MAJOR_LINKCH[5:0],
MAJOR_E_LINK and E_SG must be written as zero. A 15-bit BITER count is always used.

Table 4-3. Transfer Control Descriptor Field Descriptions (continued)

Bits Name Description
Configuring and Using the MAC7100 eDMA Controller, Rev. 0.0

PreliminaryFreescale Semiconductor 11

Example eDMA Configurations
5 Example eDMA Configurations
This section walks through four example eDMA configurations, starting with a simple configuration and
building on this to introduce the more advanced features and functions of the eDMA at an application
level. All the example code is written using the Freescale MAC7100 header file, which is included in
AN2898SW.zip.

5.1 Example 1: A Basic Transfer
This example configures the eDMA for a basic software triggered eDMA transfer. It assumes that the
MAC7100 evaluation board is being used with the device operating in expanded mode and the external
SRAM mapped to location 0.

5.1.1 Requirements
Three 32-bit data values, located in external SRAM memory, are to be relocated into internal SRAM. The
data is located at address 0x500 and is to be moved to address 0x40002000. When the channel performing
the transfer is activated by software, the first 32-bit piece of data in the sequence is moved from the source
to the destination. On the second activation, the second 32-bit value is transferred and on the third, the third
piece of data. Figure 8 shows the requirements of this example.

Once this transfer has completed the channel is not utilised again making it unnecessary to restore or
prepare the channel for future transfers.

Figure 8. Example 1 Requirements

5.1.2 Module configuration
This example uses only software channel activation and the default eDMA wide configurations, therefore
it is not necessary to configure the DMAMux or the eDMA module registers. It is only necessary to load
the source data before configuring and activating the channel via the TCDs.

The code to perform the transfer on channel 0 is given below:

0x00000500

0x00000504

0x00000508

Source
Address

0xAAAAAAAA

0xBBBBBBBB

0xCCCCCCCC

Data

Transfer iii

0x40002000

0x40002000

0x40002008

Destination
Address

0xAAAAAAAA

0xBBBBBBBB

0xCCCCCCCC

Data

Transfer ii

Transfer i

DMA

DMA channel n
activated by software

eDMA reads 1 x 32 bits
of source data

eDMA writes 1 x 32 bits
of source data

1

2 3
Configuring and Using the MAC7100 eDMA Controller, Rev. 0.0

Preliminary Freescale Semiconductor12

Example eDMA Configurations
/* Load data for DMA to Move*/
(*(unsigned long volatile *)(0x00000500)) = 0xAAAAAAAA;
(*(unsigned long volatile *)(0x00000504)) = 0xBBBBBBBB;
(*(unsigned long volatile *)(0x00000508)) = 0xCCCCCCCC;
/* Configure DMA Channel 0 TCD */
EDMAC_TCD0_W0 = EDMAC_SADDR(0x500); /* Source Address = 0x500, Ext RAM */
EDMAC_TCD0_W1 = (0

| EDMAC_SMOD(0x0) /* Source Modulo, feature disabled */
| EDMAC_SSIZE(0x2) /* Source Size = 0x2 -> 32-bit transfers */
| EDMAC_DMOD(0x0) /* Destination Modulo, feature disabled */
| EDMAC_DSIZE(0x2) /* Destination Size = 0x2 -> 32-bit transfers */
| EDMAC_SOFF(0x4)); /* Source address offset = 0x4 = 32-bit */

EDMAC_TCD0_W2 = EDMAC_NBYTES(0x4); /* Transfer 4 bytes(32-bits) per ch activation*/
EDMAC_TCD0_W3 = EDMAC_SLAST(-12); /* Restore Source address by -12 -> 3x32-bits */
EDMAC_TCD0_W4 = EDMAC_DADDR(0x40002000);/* Destination Address = 0x40002000, Int SRAM */
EDMAC_TCD0_W5 = (0

/*| EDMAC_CITER_E_LINK /* Do not set ELINK bit, no channel linking */
| EDMAC_CITER(0x3) /* Current Iteration Count -> 3x “NBYTES” xfer */
| EDMAC_DOFF(0x4)); /* Destination address offset = 0x4 */

EDMAC_TCD0_W6 = EDMAC_DLAST(-12); /* Restore Dest address by -12 -> 3x32-bits */
EDMAC_TCD0_W7 = (0

/*| EDMAC_BITER_E_LINK /* Do not set ELINK bit, no channel linking */
| EDMAC_BITER(0x3) /* Beginning Iteration Count = 3 = CITER */
| EDMAC_BWC(0x0) /* Bandwidth control = 0 -> No eDMA stalls */
| EDMAC_MAJOR_LINKCH(0x0)); /* Ignored, no channel linking */
/*| EDMAC_DONE /* Done, status flag */
/*| EDMAC_ACTIVE /* Active, status flag */
/*| EDMAC_MAJOR_E_LINK /* Do not set ELINK bit, no channel linking */
/*| EDMAC_E_SG /* Do not set E_SG, no scatter-gather */
/*| EDMAC_D_REQ /* D_REQ = 0 -> DMAERQ bit not affected */
/*| EDMAC_INT_HALF /* No interrupt on half of major loop */
/*| EDMAC_INT_MAJ /* No interrupt on major loop complete */
/*| EDMAC_START); /* Do not explicitly start channel */

EDMAC_TCD0_W7 |= EDMAC_START /* Activate Channel -> Perform Transfer i */
EDMAC_TCD0_W7 |= EDMAC_START /* Activate Channel -> Perform Transfer ii */
EDMAC_TCD0_W7 |= EDMAC_START /* Activate Channel -> Perform Transfer iii */

NOTE
Bit fields which are commented out are shown so that all of the TCD fields
can be viewed. If a bit field is commented out, its value is set to 0.

If possible, step through the code in a debugging environment and monitor the source and destination
memory address as the channels are activated and the transfers performed. On completion of the major
loop the source and destination addresses are restored. Further activations of the channel will therefore
result in the transfer process being repeated.

With this configuration each time one of the 32-bit values is transferred, a minor loop is completed. Once
all three transfers have been completed, the major loop is complete. Configuring n-bytes to be 12, the
number of bytes that are moved in the example, would result in all three 32-bit pieces of data being moved
to the destination in a single channel activation.

5.2 Example 2: PIT-Gated DMA Requests
In this example, the eDMA is used to supply the analog-to-digital converter (ATD) with a command word
and move the result of ATD conversion to a location in external RAM. The ATD command word stores all
Configuring and Using the MAC7100 eDMA Controller, Rev. 0.0

PreliminaryFreescale Semiconductor 13

Example eDMA Configurations
of the information that the ATD module requires for a conversion, so by using the DMA to provide the
command words, the module can be instructed to perform conversions without any CPU intervention.
Once the result is transferred by the eDMA to external RAM it is displayed pictorially using the 8 LEDs
on the MAC7100 EVB. The application makes use of the potentiometer on the EVB to supply the ATD
with a variable input voltage. As the POT is turned, the ATD input voltage will change, causing an
illuminated LED to move up or down the LED bank.

5.2.1 Requirements
The input to the ATD should be sampled every 1 ms. To achieve this a 32-bit ATD command word must
be supplied to the ATD command word register every 1 ms, when the module is able to accept the
command. The ATD command word register is located at address 0xFC0E0010. This example will only
require a single command word to be provided to the ATD; it is stored in a variable labelled “command.”

Once the ATD has completed the conversion the result is moved from the ATD result register, located at
address 0xFC0E0014 to address 0x500 in external RAM. Figure 9 illustrates the functionality of this
example.

Figure 9. Example 2 Overview

5.2.2 Module Configuration
To implement this example two eDMA channels are required: one to transfer the command word and one
to transfer the result. The command word transfer request requires both a 1 ms PIT trigger and the ATD
command request flag to be asserted, ensuring that the module is able to perform the transfer and that the
commands are supplied at a regular interval. The DMAMux must be configured for PIT gated channel
activation. Channel 1 will be configured to perform this transfer.

Channel 0 will be used to transfer the ATD result to RAM. This transfer will be activated when the ATD
result ready flag is asserted. The default channel arbitration will give channel 1 priority over channel 0.

Main loop
continuously reads
RAM and displays

DMA

Rotating the POT
changes the analog

input to the ATD

ATD command
DMA request

gated with 1 ms
PIT pulse

ATD result
DMA request

corresponding data

LED moves
up/down as the
POT is rotated

ATD
Conversion

ATD
Conversion
Command

ATD
Result

External
RAM
Configuring and Using the MAC7100 eDMA Controller, Rev. 0.0

Preliminary Freescale Semiconductor14

Example eDMA Configurations
This configuration ensures that the ATD receives a command word every 1 ms. It could however cause
results to be overwritten in the result register before they have been moved by the eDMA, as the channel
reading the results does not have priority. An ATD interrupt can be generated if a result is lost. The set up
could be changed to ensure every result is captured to give the channel reading the results higher priority.

The resultant DMAMux configuration for channels 0 and 1 is:

/* Configure DMAMux for Channel 0 */
DMAMUX_CHCONFIG0 = (0

| DMAMUX_ENABLE /* Enable routing of DMA request */
/*| DMAMUX_TRIG /* Trigger Mode: Normal */
| DMAMUX_SOURCE(0x1F)); /* Channel Activation Source: ATD_A Result */

/* Configure DMAMux for Channel 1 */
DMAMUX_CHCONFIG1 = (0

| DMAMUX_ENABLE /* Enable routing of DMA request */
| DMAMUX_TRIG /* Trigger Mode: Periodic */
| DMAMUX_SOURCE(0x20)); /* Channel Activation Source: ATD_A Command */

Channel 1 is configured to use a periodic trigger; the PIT 2 module must be enabled and configured for the
desired time interval. For details on the PIT configuration, please refer to the source code for this example.

Each channel in this example is transferring data to or from the static-address, 32-bit wide command or
result register, respectively. Therefore, it is necessary to restore the address pointers in the TCD when the
major or minor transfer loop is complete. This example has no table of data to transfer, making only a
single minor loop necessary to complete a major loop. The source and destination addresses are therefore
restored on completion of the major loop.

The TCD configuration for channels 0 and 1 is:

/* Configure DMA Channel 0 TCD */
EDMAC_TCD0_W0 = EDMAC_SADDR(0xFC0E0014);/* Source Address = ATD Result Register
EDMAC_TCD0_W1 = (0

| EDMAC_SMOD(0x0) /* Source Modulo, feature disabled */
| EDMAC_SSIZE(0x2) /* Source Size = 0x2 -> 32-bit transfers */
| EDMAC_DMOD(0x0) /* Destination Modulo, feature disabled */
| EDMAC_DSIZE(0x2) /* Destination Size = 0x2 -> 32-bit transfers */
| EDMAC_SOFF(0x0)); /* Source addr offset = 0x0, do not increment */

EDMAC_TCD0_W2 = EDMAC_NBYTES(0x4); /* Transfer 4 bytes per channel activation */
EDMAC_TCD0_W3 = EDMAC_SLAST(0x0); /* Do not adjust SADDR upon channel completion */
EDMAC_TCD0_W4 = EDMAC_DADDR(0x500); /* Destination Address = 0x500, Ext RAM */
EDMAC_TCD0_W5 = (0

/*| EDMAC_CITER_E_LINK /* Do not set ELINK bit, no channel linking */
| EDMAC_CITER(0x1) /* Current Iter Count -> 1 "NBYTES" transfer */
| EDMAC_DOFF(0x0)); /* Destination addr offset = 0x0, no increment */

EDMAC_TCD0_W6 = EDMAC_DLAST(0x0); /* Do not adjust DADDR upon channel completion */
EDMAC_TCD0_W7 = (0

/*| EDMAC_BITER_E_LINK /* Do not set ELINK bit, no channel linking */
| EDMAC_BITER(0x1) /* Beginning Iteration Count = 1 = CITER */
| EDMAC_BWC(0x0) /* Bandwidth control = 0 -> No eDMA stalls */
| EDMAC_MAJOR_LINKCH(0x0)); /* Ignored, no channel linking */
/*| EDMAC_DONE /* Done, status flag */
/*| EDMAC_ACTIVE /* Active, status flag */
/*| EDMAC_MAJOR_E_LINK /* Do not set ELINK bit, no channel linking */
/*| EDMAC_E_SG /* Do not set E_SG, no scatter-gather */
/*| EDMAC_D_REQ /* D_REQ = 0 -> DMAERQ bit not affected */
/*| EDMAC_INT_HALF /* No interrupt on half of major loop */
/*| EDMAC_INT_MAJ /* No interrupt on major loop complete */
Configuring and Using the MAC7100 eDMA Controller, Rev. 0.0

PreliminaryFreescale Semiconductor 15

Example eDMA Configurations
/*| EDMAC_START); /* Do not explicitly start channel */
/* Configure DMA Channel 1 TCD */
EDMAC_TCD1_W0 = EDMAC_SADDR((uint32)&command);/* Source Addr = address of command var */
EDMAC_TCD1_W1 = (0

| EDMAC_SMOD(0x0) /* Source Modulo, feature disabled */
| EDMAC_SSIZE(0x2) /* Source Size = 0x2 -> 32-bit transfers */
| EDMAC_DMOD(0x0) /* Destination Modulo, feature disabled */
| EDMAC_DSIZE(0x2) /* Destination Size = 0x2 -> 32-bit transfers */
| EDMAC_SOFF(0x0)); /* Source addr offset = 0x0, do not increment */

EDMAC_TCD1_W2 = EDMAC_NBYTES(0x4); /* Transfer 4 bytes per channel activation */
EDMAC_TCD1_W3 = EDMAC_SLAST(0x0); /* Do not adjust SADDR upon channel completion */
EDMAC_TCD1_W4 = EDMAC_DADDR(0xFC0E0010);/* Dest Addr = ATD Command Word Register */
EDMAC_TCD1_W5 = (0

/*| EDMAC_CITER_E_LINK /* Do not set ELINK bit, no channel linking */
| EDMAC_CITER(0x1) /* Current Iter Count -> 1 "NBYTES" transfer */
| EDMAC_DOFF(0x0)); /* Destination addr offset = 0x0, no increment */

EDMAC_TCD1_W6 = EDMAC_DLAST(0x0); /* Do not adjust DADDR upon channel completion */
EDMAC_TCD1_W7 = (0

/*| EDMAC_BITER_E_LINK /* Do not set ELINK bit, no channel linking */
| EDMAC_BITER(0x1) /* Beginning Iteration Count = 1 = CITER */
| EDMAC_BWC(0x0) /* Bandwidth control = 0 -> No eDMA stalls */
| EDMAC_MAJOR_LINKCH(0x0)); /* Ignored, no channel linking */
/*| EDMAC_DONE /* Done, status flag */
/*| EDMAC_ACTIVE /* Active, status flag */
/*| EDMAC_MAJOR_E_LINK /* Do not set ELINK bit, no channel linking */
/*| EDMAC_E_SG /* Do not set E_SG, no scatter-gather */
/*| EDMAC_D_REQ /* D_REQ = 0 -> DMAERQ bit not affected */
/*| EDMAC_INT_HALF /* No interrupt on half of major loop */
/*| EDMAC_INT_MAJ /* No interrupt on major loop complete */
/*| EDMAC_START); /* Do not explicitly start channel */

Using these configurations will produce the required eDMA functionality for this example. Please refer to
the full source code for this example in the ZIP file.

5.3 Example 3: Circular Buffers
This example highlights the functionally of the address Modulo feature which simplifies the
implementation of circular data buffers.

5.3.1 Requirements
A 16-byte source buffer is located at address 0x40002000. It is required that multiple copies of the source
data be used to fill two 64-byte buffers located at address 0x40004000 and 0x40005000. Figure 10 shows
this requirement. The first buffer should be filled on the first channel activation and the second on the
second activation.
Configuring and Using the MAC7100 eDMA Controller, Rev. 0.0

Preliminary Freescale Semiconductor16

Example eDMA Configurations
Figure 10. Example 3 Overview

5.3.2 Module Configuration
Each time the channel is activated the 16-bytes of source data must be transferred to the destination address
four times. 64-bytes must therefore be transferred for each channel activation. To create a circular data
queue the SMOD field is configured to equal four. This fixes all the address bits in the source address
except for the lowest four bits. For example:

Transfer Source Address Transfer Source Address

1 0x40002000 17 0x40002000

2 0x40002001 18 0x40002001

3 0x40002002 19 0x40002002

4 0x40002003 20 0x40002003

5 0x40002004 21 0x40002004

6 0x40002005 22 0x40002005

7 0x40002006 23 0x40002006

8 0x40002007 24 0x40002007

9 0x40002008 25 0x40002008

10 0x40002009 26 0x40002009

11 0x4000200A 27 0x4000200A

12 0x4000200B 28 0x4000200B

13 0x4000200C 29 0x4000200C

14 0x4000200D 30 0x4000200D

15 0x4000200E 31 0x4000200E

16 0x4000200F 32 0x4000200F

16-byte Source

16-byte Source

16-byte Source

16-byte Source

0x40004000

16-byte Source

16-byte Source

16-byte Source

16-byte Source

0x40005000

eDMA

Channel Activated Channel Activated

16-byte Source

0x40002000
Configuring and Using the MAC7100 eDMA Controller, Rev. 0.0

PreliminaryFreescale Semiconductor 17

Conclusion
If the SMOD field were set to zero, after the 16th transfer the source address would continue to increment.
When only the lower four bits are allowed to increment the address wraps to its original value once the
maximum value has been reached in the lower four bits.

The TCD configuration for this example is:

/* Configure DMA Channel 0 TCD */
EDMAC_TCD0_W0 = EDMAC_SADDR(0x40002000);/* Source Address = 0x40002000
EDMAC_TCD0_W1 = (0

| EDMAC_SMOD(0x4) /* Source Modulo = 4 -> 16-byte circular queue */
| EDMAC_SSIZE(0x0) /* Source Size = 0x0 -> 8-bit transfers */
| EDMAC_DMOD(0x0) /* Destination Modulo, feature disabled */
| EDMAC_DSIZE(0x0) /* Destination Size = 0x0 -> 8-bit transfers */
| EDMAC_SOFF(0x1)); /* Source address offset = 0x1, increment by 1 */

EDMAC_TCD0_W2 = EDMAC_NBYTES(0x40); /* Transfer 64 bytes per channel activation */
EDMAC_TCD0_W3 = EDMAC_SLAST(0x0); /* Do not adjust SADDR upon channel completion */
EDMAC_TCD0_W4 = EDMAC_DADDR(0x40004000);/* Destination Address = 0x40004000 */
EDMAC_TCD0_W5 = (0

/*| EDMAC_CITER_E_LINK /* Do not set ELINK bit, no channel linking */
| EDMAC_CITER(0x1) /* Current Iteration Count -> 1 “NBYTES” transfer

*/
| EDMAC_DOFF(0x1)); /* Destination address offset = 0x0, no increment

*/
EDMAC_TCD0_W6 = EDMAC_DLAST(0xFC0); /* Add 0xFC0 bytes to DADDR on channel complete */
EDMAC_TCD0_W7 = (0

/*| EDMAC_BITER_E_LINK /* Do not set ELINK bit, no channel linking */
| EDMAC_BITER(0x1) /* Beginning Iteration Count = 1 = CITER */
| EDMAC_BWC(0x0) /* Bandwidth control = 0 -> No eDMA stalls */
| EDMAC_MAJOR_LINKCH(0x0)); /* Ignored, no channel linking */
/*| EDMAC_DONE /* Done, status flag */
/*| EDMAC_ACTIVE /* Active, status flag */
/*| EDMAC_MAJOR_E_LINK /* Do not set ELINK bit, no channel linking */
/*| EDMAC_E_SG /* Do not set E_SG, no scatter-gather */
/*| EDMAC_D_REQ /* D_REQ = 0 -> DMAERQ bit not affected */
/*| EDMAC_INT_HALF /* No interrupt on half of major loop */
/*| EDMAC_INT_MAJ /* No interrupt on major loop complete */
/*| EDMAC_START); /* Do not explicitly start channel */

By activating the channel twice the two 64-byte data buffers will be created at the appropriate destination
address. Notice the TCD is configured so that after a buffer is filled a major loop is complete. The start
address of the next buffer is calculated at this point by adding the appropriate offset to the current source
address.

6 Conclusion
This application note should have provided you with a good understanding of the MAC7100 eDMA
controller.

You should now be able to create eDMA configurations suitable for your application. The source code
provide along with this application note can be used as a basis for your configurations.

For more information on the Freescale MAC7100 family, please see www.freescale.com/mac7100
Configuring and Using the MAC7100 eDMA Controller, Rev. 0.0

Preliminary Freescale Semiconductor18

THIS PAGE INTENTIONALLY LEFT BLANK
Configuring and Using the MAC7100 eDMA Controller, Rev. 0.0

PreliminaryFreescale Semiconductor 19

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the property
of their respective owners. The ARM POWERED logo is a registered
trademark of ARM Limited. ARM7TDMI-S is a trademark of ARM Limited.

© Freescale Semiconductor, Inc. 2005. All rights reserved.

AN2898
Rev. 0.0
06/2005

	Configuring and Using the MAC7100 eDMA Controller
	1 Introduction
	1.1 DMA controller Overview
	1.2 MAC7100 eDMA Controller Features
	1.3 eDMA Architectural Integration

	2 Activating eDMA Transfers
	2.1 Activation Sources
	2.2 DMA Multiplexer
	2.3 Activation Options
	2.4 Handling Multiple Transfer Requests

	3 Transfer Process
	3.1 Major and Minor Transfer Loops
	3.2 Completing a Minor Transfer Loop
	3.3 Completing a Major Transfer Loop

	4 Configuring the eDMA
	4.1 Configuration Steps
	4.2 Transfer Control Descriptors

	5 Example eDMA Configurations
	5.1 Example 1: A Basic Transfer
	5.1.1 Requirements
	5.1.2 Module configuration

	5.2 Example 2: PIT-Gated DMA Requests
	5.2.1 Requirements
	5.2.2 Module Configuration

	5.3 Example 3: Circular Buffers
	5.3.1 Requirements
	5.3.2 Module Configuration

	6 Conclusion

